terminated_or_truncated¶
- torchrl.envs.terminated_or_truncated(data: TensorDictBase, full_done_spec: torchrl.data.tensor_specs.TensorSpec | None = None, key: str = '_reset', write_full_false: bool = False) bool[source]¶
Reads the done / terminated / truncated keys within a tensordict, and writes a new tensor where the values of both signals are aggregated.
The modification occurs in-place within the TensorDict instance provided. This function can be used to compute the “_reset” signals in batched or multiagent settings, hence the default name of the output key.
- Parameters:
data (TensorDictBase) – the input data, generally resulting from a call to
step().full_done_spec (TensorSpec, optional) – the done_spec from the env, indicating where the done leaves have to be found. If not provided, the default
"done","terminated"and"truncated"entries will be searched for in the data.key (NestedKey, optional) –
where the aggregated result should be written. If
None, then the function will not write any key but just output whether any of the done values was true. .. note:: if a value is already present for thekeyentry,the previous value will prevail and no update will be achieved.
write_full_false (bool, optional) – if
True, the reset keys will be written even if the output isFalse(ie, no done isTruein the provided data structure). Defaults toFalse.
- Returns: a boolean value indicating whether any of the done states found in the data
contained a
True.
Examples
>>> from torchrl.data.tensor_specs import Categorical >>> from tensordict import TensorDict >>> spec = Composite( ... done=Categorical(2, dtype=torch.bool), ... truncated=Categorical(2, dtype=torch.bool), ... nested=Composite( ... done=Categorical(2, dtype=torch.bool), ... truncated=Categorical(2, dtype=torch.bool), ... ) ... ) >>> data = TensorDict({ ... "done": True, "truncated": False, ... "nested": {"done": False, "truncated": True}}, ... batch_size=[] ... ) >>> data = _terminated_or_truncated(data, spec) >>> print(data["_reset"]) tensor(True) >>> print(data["nested", "_reset"]) tensor(True)