Shortcuts

MultiThreadedEnvWrapper

torchrl.envs.MultiThreadedEnvWrapper(*args, **kwargs)[source]

Wrapper for envpool-based multithreaded environments.

GitHub: https://github.com/sail-sg/envpool

Paper: https://arxiv.org/abs/2206.10558

EnvPool environments auto-reset internally when episodes end. This wrapper handles that behavior by caching the auto-reset observations and returning them appropriately in step_and_maybe_reset.

Parameters:
  • env (envpool.python.envpool.EnvPoolMixin) – the envpool to wrap.

  • categorical_action_encoding (bool, optional) – if True, categorical specs will be converted to the TorchRL equivalent (torchrl.data.Categorical), otherwise a one-hot encoding will be used (torchrl.data.OneHot). Defaults to False.

Keyword Arguments:
  • disable_env_checker (bool, optional) – for gym > 0.24 only. If True (default for these versions), the environment checker won’t be run.

  • frame_skip (int, optional) – if provided, indicates for how many steps the same action is to be repeated. The observation returned will be the last observation of the sequence, whereas the reward will be the sum of rewards across steps.

  • device (torch.device, optional) – if provided, the device on which the data is to be cast. Defaults to torch.device("cpu").

  • allow_done_after_reset (bool, optional) – if True, it is tolerated for envs to be done just after reset() is called. Defaults to False.

Variables:

batch_size – The number of envs run simultaneously.

Examples

>>> import envpool
>>> from torchrl.envs import MultiThreadedEnvWrapper
>>> env_base = envpool.make(
...     task_id="Pong-v5", env_type="gym", num_envs=4, gym_reset_return_info=True
... )
>>> env = MultiThreadedEnvWrapper(envpool_env)
>>> env.reset()
>>> env.rand_step()

Docs

Lorem ipsum dolor sit amet, consectetur

View Docs

Tutorials

Lorem ipsum dolor sit amet, consectetur

View Tutorials

Resources

Lorem ipsum dolor sit amet, consectetur

View Resources