Shortcuts

Single Node Collectors

TorchRL provides several collector classes for single-node data collection, each with different execution strategies.

Single node data collectors

BaseCollector()

Base class for data collectors.

Collector(create_env_fn[, policy, ...])

Generic data collector for RL problems.

AsyncCollector(*args[, sync])

Runs a single DataCollector on a separate process.

MultiCollector(*args[, sync])

Runs a given number of DataCollectors on separate processes.

MultiSyncCollector(*args[, sync])

Runs a given number of DataCollectors on separate processes synchronously.

MultiAsyncCollector(*args[, sync])

Runs a given number of DataCollectors on separate processes asynchronously.

Note

The following legacy names are also available for backward compatibility:

  • DataCollectorBaseBaseCollector

  • SyncDataCollectorCollector

  • aSyncDataCollectorAsyncCollector

  • _MultiDataCollectorMultiCollector

  • MultiSyncDataCollectorMultiSyncCollector

  • MultiaSyncDataCollectorMultiAsyncCollector

Using MultiCollector

The MultiCollector class is the recommended way to run parallel data collection. It uses a sync parameter to dispatch to either MultiSyncCollector or MultiAsyncCollector:

from torchrl.collectors import MultiCollector
from torchrl.envs import GymEnv

def make_env():
    return GymEnv("CartPole-v1")

# Synchronous multi-worker collection (recommended for on-policy algorithms)
sync_collector = MultiCollector(
    create_env_fn=[make_env] * 4,  # 4 parallel workers
    policy=my_policy,
    frames_per_batch=1000,
    total_frames=100000,
    sync=True,  # ← All workers complete before delivering batch
)

# Asynchronous multi-worker collection (recommended for off-policy algorithms)
async_collector = MultiCollector(
    create_env_fn=[make_env] * 4,
    policy=my_policy,
    frames_per_batch=1000,
    total_frames=100000,
    sync=False,  # ← First-come-first-serve delivery
)

# Iterate over collected data
for data in sync_collector:
    # Train on data...
    pass

sync_collector.shutdown()

Comparison:

Feature

sync=True

sync=False

Batch delivery

All workers complete first

First available worker

Policy consistency

All data from same policy version

Data may be from older policy

Best for

On-policy (PPO, A2C)

Off-policy (SAC, DQN)

Throughput

Limited by slowest worker

Higher throughput

Running the Collector Asynchronously

Passing replay buffers to a collector allows us to start the collection and get rid of the iterative nature of the collector. If you want to run a data collector in the background, simply run start():

>>> collector = Collector(..., replay_buffer=rb) # pass your replay buffer
>>> collector.start()
>>> # little pause
>>> time.sleep(10)
>>> # Start training
>>> for i in range(optim_steps):
...     data = rb.sample()  # Sampling from the replay buffer
...     # rest of the training loop

Single-process collectors (Collector) will run the process using multithreading, so be mindful of Python’s GIL and related multithreading restrictions.

Multiprocessed collectors will on the other hand let the child processes handle the filling of the buffer on their own, which truly decouples the data collection and training.

Data collectors that have been started with start() should be shut down using async_shutdown().

Warning

Running a collector asynchronously decouples the collection from training, which means that the training performance may be drastically different depending on the hardware, load and other factors (although it is generally expected to provide significant speed-ups). Make sure you understand how this may affect your algorithm and if it is a legitimate thing to do! (For example, on-policy algorithms such as PPO should not be run asynchronously unless properly benchmarked).

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources