Shortcuts

Source code for torchrl.modules.llm.policies.vllm_wrapper

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations

import collections
import threading
import warnings
from typing import Any, Literal

import torch
from tensordict import (
    lazy_stack,
    LazyStackedTensorDict,
    MetaData,
    NonTensorStack,
    set_list_to_stack,
    TensorDict,
    TensorDictBase,
)
from tensordict.tensorclass import from_dataclass, TensorClass
from tensordict.utils import _zip_strict, NestedKey
from torch import distributions as D
from torch.nn.utils.rnn import pad_sequence

from torchrl.envs.utils import _classproperty
from torchrl.modules.llm.policies.common import (
    _batching,
    _extract_responses_from_full_histories,
    ChatHistory,
    LLMWrapperBase,
    LogProbs,
    Masks,
    Text,
    Tokens,
)
from torchrl.modules.utils.utils import _unpad_tensors

# Type imports
try:
    import transformers
    import vllm
    from vllm.outputs import RequestOutput
    from vllm.sampling_params import SamplingParams
except ImportError:
    vllm = None
    transformers = None
    SamplingParams = Any  # type: ignore
    RequestOutput = Any  # type: ignore


[docs]class vLLMWrapper(LLMWrapperBase): """A wrapper class for vLLM models, providing a consistent interface for text generation and log probability computation. This class is a subclass of :class:`~torchrl.modules.llm.policies.LLMWrapperBase` and provides a unified API for handling different input modalities (history, text, tokens) with consistent output structure using :class:`~tensordict.TensorClass` objects. Args: model (vllm.LLM | str): The vLLM model to wrap. If a string, it will be passed to `vllm.LLM`. Keyword Args: tokenizer (transformers.tokenization_utils.PreTrainedTokenizer | str | None, optional): The tokenizer to use for encoding and decoding text. If `None`, the tokenizer associated with the model will be used. If a string, it will be passed to `transformers.AutoTokenizer.from_pretrained`. Defaults to `None`. input_mode (str, optional): The input modality to use. Must be one of `"history"`, `"text"`, or `"tokens"`. Defaults to `"history"`. input_key (str | None, optional): The key for the input data. If `None`, defaults to - `("history", "prompt")` for `"history"` when `generate=True`, `("history", "full")` for `"history"` when `generate=False` - `("text", "prompt")` for `"text"` when `generate=True`, `("text", "full")` for `"text"` when `generate=False` - `("tokens", "prompt")` for `"tokens"` when `generate=True`, `("tokens", "full")` for `"tokens"` when `generate=False` attention_mask_key (str, optional): The key for attention masks (used in `"tokens"` mode). Defaults to `"attention_mask"`. .. warning:: This argument is under development and may change in the future. generate (bool, optional): Whether to enable text generation. If `True`, the model will generate text based on the input. If `False`, only log probabilities will be computed. Defaults to `True`. return_log_probs (bool, optional): Whether to return log probabilities. Defaults to `True`. generate_kwargs (dict | None, optional): Additional arguments to pass to the model's generate method. Defaults to `None`. **Standardized Parameters (cross-backend compatible):** * **max_new_tokens** (int): Maximum number of new tokens to generate (maps to vLLM's max_tokens) * **num_return_sequences** (int): Number of sequences to return (maps to vLLM's n) * **temperature** (float): Sampling temperature (0.0 = deterministic, higher = more random) * **top_p** (float): Nucleus sampling parameter (0.0-1.0) * **top_k** (int): Top-k sampling parameter * **repetition_penalty** (float): Penalty for repeating tokens * **do_sample** (bool): Whether to use sampling vs greedy decoding * **num_beams** (int): Number of beams for beam search * **length_penalty** (float): Penalty for sequence length * **early_stopping** (bool): Whether to stop early in beam search * **stop_sequences** (list): Sequences that stop generation (maps to vLLM's stop) * **skip_special_tokens** (bool): Whether to skip special tokens in output * **logprobs** (bool): Whether to return log probabilities .. warning:: Usage of this parameter is discouraged as it may conflict with the `generate` parameter of the class. **vLLM-Specific Parameters:** * **presence_penalty** (float): Penalty for token presence * **frequency_penalty** (float): Penalty for token frequency * **ignore_eos** (bool): Whether to ignore EOS token * **prompt_logprobs** (bool): Whether to return prompt log probabilities * **detokenize** (bool): Whether to detokenize output * **include_stop_str_in_output** (bool): Whether to include stop strings in output * **spaces_between_special_tokens** (bool): Whether to add spaces between special tokens * **sampling_type** (str): Type of sampling to use * **temperature_last** (bool): Whether to apply temperature only to last token * **top_p_last** (bool): Whether to apply top_p only to last token * **top_k_last** (bool): Whether to apply top_k only to last token **Legacy Parameter Support:** * **max_tokens** (int): Automatically converted to max_new_tokens * **n** (int): Automatically converted to num_return_sequences **Parameter Conflict Resolution:** When both legacy (vLLM-specific) and standardized parameter names are provided, a :exc:`ValueError` is raised to prevent confusion. For example: * If both ``max_tokens`` and ``max_new_tokens`` are passed, an error is raised * If both ``n`` and ``num_return_sequences`` are passed, an error is raised This ensures clear parameter usage and prevents unexpected behavior. tokenizer_kwargs (dict | None, optional): Additional arguments to pass to the tokenizer. Defaults to `None`. pad_output (bool, optional): Whether to pad the output sequences to a uniform length. Defaults to `False`. pad_model_input (bool, optional): Whether to pad the model input sequences to a uniform length. This is not supported by vLLM. inplace (Literal[True, False, "empty"] | None, optional): Determines how the module should handle in-place operations. Defaults to `True`. device (torch.device | None, optional): The device to use for computation. Defaults to `None`. layout (torch.layout | None, optional): The layout to use for the output tensors when `pad_output=False`. Defaults to `torch.strided`. chat_template_name (Literal["chatml_format", "qwen"] | None, optional): The name of the chat template to use when applying the chat template to the history. Defaults to `None`. For `input_mode="history"` only. chat_template (str | None, optional): The chat template to use when applying the chat template to the history. Defaults to `None`. For `input_mode="history"` only. num_samples (int | None, optional): The number of samples to generate. Defaults to `None` (one sample, and no batch-dimension for it). Can also be set via the `generate_kwargs["n"] = value` argument. log_probs_key (NestedKey | None, optional): The key for the log probabilities :class:`~torchrl.modules.llm.policies.LogProbs` object. Defaults to `"log_probs"`. text_key (NestedKey | None, optional): The key for the action :class:`~torchrl.modules.llm.policies.Text` object. Defaults to `"text"`. tokens_key (NestedKey | None, optional): The key for the action :class:`~torchrl.modules.llm.policies.Tokens` object. Defaults to `"tokens"`. masks_key (NestedKey | None, optional): The key for the action :class:`~torchrl.modules.llm.policies.Masks` object. Defaults to `"masks"`. history_key (NestedKey | None, optional): The key for the action :class:`~torchrl.modules.llm.policies.ChatHistory` object. Defaults to `"history"`. batching (bool, optional): Whether to enable batching. Defaults to `False`. See :ref:`ref_batching` below for more details. min_batch_size (int | None, optional): The minimum batch size to use for batching. See :ref:`ref_batching` below for more details. max_batch_size (int | None, optional): The maximum batch size to use for batching. See :ref:`ref_batching` below for more details. batching_timeout (float, optional): The timeout for batching. See :ref:`ref_batching` below for more details. .. _ref_batching: Batching is a feature that allows the module to process multiple inputs in a single call. It is designed to work in a multi-threaded environment. To enable batching, it suffices to set `batching=True` which will set `min_batch_size` to 1 if not provided. If you want to set a different value for `min_batch_size` or `max_batch_size` for a fine-grained control, you can to set `batching=True` and then set `min_batch_size` or `max_batch_size` to a value greater or equal to 1. The way batching works is as follows: - If `min_batch_size` is not provided but `max_batch_size` is, `min_batch_size` is set to 1. - If `max_batch_size` is not provided but `min_batch_size` is, `max_batch_size` is set to the number of inputs in the queue. - When the model is called, a check is performed to see if the number of inputs in the queue is greater or equal to `min_batch_size`. If it is, the batch is processed immediately, while waiting for the previous batch to be processed if the model is busy. Otherwise, the input is added to the queue and the function waits for the batch to be completed. While waiting for the batch to be completed, a timeout is set to `batching_timeout` seconds such that if the batch is not completed after `batching_timeout` seconds, the remaining items to process are processed as is and the function returns after at most `batching_timeout` seconds (plus the time to finish processing the previous and current batch). Input Keys: The input key depends on both `input_mode` and `generate`: - If `input_mode="history"` and `generate=True`: `input_key` (defaults to `("history", "prompt")`) - If `input_mode="history"` and `generate=False`: `input_key` (defaults to `("history", "full")`) - If `input_mode="text"` and `generate=True`: `input_key` (defaults to `("text", "prompt")`) - If `input_mode="text"` and `generate=False`: `input_key` (defaults to `("text", "full")`) - If `input_mode="tokens"` and `generate=True`: `input_key` (defaults to `("tokens", "prompt")`) - If `input_mode="tokens"` and `generate=False`: `input_key` (defaults to `("tokens", "full")`) Output Keys: The output keys are automatically determined based on the input_mode: - **Tokens**: Always returned (`tokens_key`, defaults to `"tokens"`) - **Text**: Returned for `"text"` and `"history"` modes (`text_key`, defaults to `"text"`) - **History**: Returned only for `"history"` mode (`history_key`, defaults to `"history"`) - **Masks**: Always returned (`masks_key`, defaults to `"masks"`) - **Log Probs**: Returned when `return_log_probs=True` (`log_probs_key`, defaults to `"log_probs"`) Example output structure for `input_mode="history"`: ``` TensorDict( text=Text(prompt=..., response=..., full=...), masks=Masks(all_attention_mask=..., all_assistant_mask=...), tokens=Tokens(prompt=..., response=..., full=...), log_probs=LogProbs(prompt=..., response=..., full=...), history=ChatHistory(prompt=..., response=..., full=...) ) ``` Example: >>> from vllm import LLM >>> from transformers import AutoTokenizer >>> from torchrl.data.llm import History >>> from torchrl.modules.llm.policies import ChatHistory >>> >>> model = LLM("gpt2") >>> tokenizer = AutoTokenizer.from_pretrained("gpt2") >>> >>> # History input (recommended for RL environments) >>> wrapper = vLLMWrapper( ... model, ... tokenizer=tokenizer, ... input_mode="history", ... generate=True, ... return_log_probs=True, ... generate_kwargs={ ... "max_new_tokens": 50, # Standardized parameter ... "temperature": 0.7, ... "top_p": 0.9, ... "do_sample": True, ... } ... ) >>> >>> history = History.from_chats([[ ... {"role": "user", "content": "Hello"}, ... {"role": "assistant", "content": "Hi there!"} ... ]]) >>> chat_history = ChatHistory(prompt=history) >>> result = wrapper(TensorDict(history=chat_history, batch_size=(1,))) >>> print(result["text"].response) # Generated text >>> print(result["log_probs"].response) # Log probabilities >>> print(result["history"].response) # History with response Attributes: collector: The collector associated with the module, if it exists. .. seealso:: - :class:`~torchrl.modules.llm.policies.LLMWrapperBase` (see :ref:`ref_categorical_sequential`) - :class:`~torchrl.modules.llm.policies.TransformersWrapper` (see :ref:`ref_transformers_wrapper`) """ def __init__( self, model: vllm.LLM | str, # type: ignore *, tokenizer: callable | str | None = None, # type: ignore input_mode: str = "history", input_key: NestedKey | None = None, attention_mask_key: str = "attention_mask", generate: bool = True, generate_kwargs: dict | None = None, tokenizer_kwargs: dict | None = None, pad_output: bool = False, pad_model_input: bool | None = None, inplace: Literal[True, False, "empty"] | None = None, device: torch.device | None = None, layout: torch.layout | None = None, num_samples: int | None = None, chat_template_name: Literal["chatml_format", "qwen"] | None = None, chat_template: str | None = None, return_log_probs: bool | None = None, history_key: NestedKey | None = "history", text_key: NestedKey | None = "text", tokens_key: NestedKey | None = "tokens", masks_key: NestedKey | None = "masks", log_probs_key: NestedKey | None = "log_probs", batching: bool | None = None, min_batch_size: int | None = None, max_batch_size: int | None = None, batching_timeout: float = 10.0, ): super().__init__() if batching and min_batch_size is None: min_batch_size = 1 elif (min_batch_size is not None or max_batch_size is not None) and ( batching is False ): raise ValueError( "min_batch_size and max_batch_size must be None if batching is False." ) # Validate that min_batch_size <= max_batch_size when both are specified if min_batch_size is not None and max_batch_size is not None: if min_batch_size > max_batch_size: raise ValueError( f"min_batch_size ({min_batch_size}) must be <= max_batch_size ({max_batch_size})" ) self._min_batch_size = min_batch_size self._max_batch_size = max_batch_size self._batching_timeout = batching_timeout self._batch_queue = [] self._futures = [] if self.batching: self._batching_lock = threading.Lock() else: self._batching_lock = None if vllm is None: raise ImportError("vllm is required for vLLMWrapper") if transformers is None: raise ImportError("transformers is required for vLLMWrapper") if isinstance(model, str): model = vllm.LLM(model) if isinstance(tokenizer, str): from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(tokenizer) from vllm import SamplingParams # Validate input_mode if input_mode not in ["history", "text", "tokens"]: raise ValueError( f"input_mode must be one of 'history', 'text', 'tokens'. Got '{input_mode}'" ) self.model = model self._remote_calls = not isinstance(model, vllm.LLM) self.input_mode = input_mode self.attention_mask_key = attention_mask_key self.generate = generate if pad_model_input is not None: raise ValueError("pad_model_input is not supported by vLLMWrapper.") # Auto-determine what to return based on input mode self.return_history = input_mode in ("history",) self.return_text = input_mode in ("text", "history") self.return_tokens = input_mode in ("tokens", "history", "text") self.return_masks = True if return_log_probs is False and not generate: raise ValueError("return_log_probs must be True when generate=False.") return_log_probs = ( True if (return_log_probs is None and generate) or (not generate) else bool(return_log_probs) ) self.return_log_probs = return_log_probs self.history_key = history_key self.log_probs_key = log_probs_key self.masks_key = masks_key self.text_key = text_key self.tokens_key = tokens_key if not isinstance(pad_output, bool): raise ValueError("pad_output must be a boolean") self.pad_output = pad_output self._device = device if not pad_output and layout is None: layout = torch.strided self.layout = layout padding_value = None # Set input keys based on mode and generate parameter if input_mode == "history": if generate: self.in_keys = [ ("history", "prompt") if input_key is None else input_key ] else: self.in_keys = [("history", "full") if input_key is None else input_key] elif input_mode == "text": if generate: self.in_keys = [("text", "prompt") if input_key is None else input_key] else: self.in_keys = [("text", "full") if input_key is None else input_key] elif input_mode == "tokens": if generate: self.in_keys = [ ("tokens", "prompt") if input_key is None else input_key ] else: self.in_keys = [("tokens", "full") if input_key is None else input_key] else: raise ValueError(f"Invalid input_mode: {input_mode}") self.input_key = self.in_keys[0] # Set output keys based on auto-determined return flags self.out_keys = [] if self.return_text: self.out_keys.append(self.text_key) if self.return_masks: self.out_keys.append(self.masks_key) if self.return_tokens: self.out_keys.append(self.tokens_key) if self.return_log_probs: self.out_keys.append(self.log_probs_key) if self.return_history: self.out_keys.append(self.history_key) # Tokenizer setup if not tokenizer_kwargs: tokenizer_kwargs = {} if not tokenizer_kwargs.setdefault("return_attention_mask", True): raise RuntimeError("return_attention_mask must be True") # If we don't pad, we use lists return_tensors = "pt" if self.pad_output else False if return_tensors: if ( tokenizer_kwargs.setdefault("return_tensors", return_tensors) != return_tensors ): raise RuntimeError if tokenizer_kwargs.setdefault("padding", self.pad_output) not in ( self.pad_output, ): raise RuntimeError if tokenizer_kwargs.setdefault("padding_side", "left") != "left": raise RuntimeError self.tokenizer_kwargs = tokenizer_kwargs # Get tokenizer if needed if tokenizer is None: try: tokenizer = model.get_tokenizer() except AttributeError: warnings.warn("No tokenizer provided and no tokenizer found in model.") self.tokenizer = tokenizer if self.tokenizer is not None and ( not hasattr(self.tokenizer, "pad_token") or self.tokenizer.pad_token is None ): self.tokenizer.pad_token = self.tokenizer.eos_token if self.tokenizer is not None: padding_value = self.tokenizer(self.tokenizer.pad_token)["input_ids"][0] self.padding_value = padding_value # Generate kwargs setup if generate_kwargs is None: generate_kwargs = {} else: generate_kwargs = dict(generate_kwargs) # Standardize common parameters generate_kwargs = self._standardize_generate_kwargs(generate_kwargs) # Extract wrapper-specific parameters vllm_specific_kwargs = self._get_wrapper_specific_kwargs( generate_kwargs, "vllm" ) # Convert common parameters back to vLLM format vllm_kwargs = {} for key, value in generate_kwargs.items(): if key in self.COMMON_GENERATION_PARAMS: # Convert common names to vLLM names if key == "max_new_tokens": vllm_kwargs["max_tokens"] = value elif key == "num_return_sequences": vllm_kwargs["n"] = value elif key == "stop_sequences": vllm_kwargs["stop"] = value elif key == "logprobs": vllm_kwargs["logprobs"] = value elif key == "do_sample": # do_sample is handled through the sampling parameters # If do_sample=False, we use greedy decoding (temperature=0) # If do_sample=True, we use the provided sampling parameters if not value: vllm_kwargs["temperature"] = 0.0 # If do_sample=True, we keep the existing temperature/top_p/top_k values elif key == "num_beams": # vLLM uses best_of instead of num_beams vllm_kwargs["best_of"] = value elif key in ["length_penalty", "early_stopping"]: # These parameters are not supported by vLLM, skip them pass else: # Direct mapping for other common parameters vllm_kwargs[key] = value # Add vLLM-specific parameters vllm_kwargs.update(vllm_specific_kwargs) self.num_samples = num_samples if vllm_kwargs.get("n", 1) > 1 or num_samples is not None: if inplace in (True, "empty"): raise ValueError( "inplace must be False (or None) when generating more than one sample." ) if inplace is None: inplace = False if ( vllm_kwargs.get("n", 1) > 1 and num_samples is not None and vllm_kwargs.get("n", 1) != num_samples ): raise ValueError("num_samples differs from generate_kwargs['n'].") elif num_samples is None: self.num_samples = vllm_kwargs.get("n", 1) vllm_kwargs["n"] = self.num_samples elif inplace is None: inplace = True self.inplace = inplace prompt_logprobs = return_log_probs if not generate: # We want only the log-probs, we generate a single token (that we then discard) # and retrieve the prompt log-probs vllm_kwargs["max_tokens"] = 1 if not return_log_probs: raise ValueError("return_log_probs must be True when generate=False.") vllm_kwargs.setdefault("detokenize", not pad_output) vllm_kwargs.setdefault("prompt_logprobs", prompt_logprobs) vllm_kwargs.setdefault("logprobs", return_log_probs) vllm_kwargs.setdefault("include_stop_str_in_output", True) vllm_kwargs.setdefault("skip_special_tokens", False) sampling_params = SamplingParams(**vllm_kwargs) self.sampling_params = sampling_params # Additional transformers-specific settings self.chat_template_name = chat_template_name self.chat_template = chat_template
[docs] def get_new_version(self, **kwargs): """Returns a new version of the module with altered parameters. For instance, the generate parameter can be altered to enable text generation or log-probabilities computation. This is especially useful when one wants to avoid re-initializing the module with a new set of parameters, when the same parameters could be used to gather log-probs. Positional arguments are not supported. See the class constructor for more details about the parameters. """ # Build the constructor arguments by using current values for missing parameters constructor_kwargs = {} # Model is always required constructor_kwargs["model"] = kwargs.get("model", self.model) # Check for each parameter and use current value if not provided if "tokenizer" in kwargs: constructor_kwargs["tokenizer"] = kwargs["tokenizer"] elif hasattr(self, "tokenizer"): constructor_kwargs["tokenizer"] = self.tokenizer if "input_mode" in kwargs: constructor_kwargs["input_mode"] = kwargs["input_mode"] elif hasattr(self, "input_mode"): constructor_kwargs["input_mode"] = self.input_mode if "input_key" in kwargs: constructor_kwargs["input_key"] = kwargs["input_key"] # Since the input_key is dynamically determined, we don't want to set it here # elif hasattr(self, "input_key"): # constructor_kwargs["input_key"] = self.input_key if "attention_mask_key" in kwargs: constructor_kwargs["attention_mask_key"] = kwargs["attention_mask_key"] elif hasattr(self, "attention_mask_key"): constructor_kwargs["attention_mask_key"] = self.attention_mask_key if "generate" in kwargs: constructor_kwargs["generate"] = kwargs["generate"] elif hasattr(self, "generate"): constructor_kwargs["generate"] = self.generate if "return_log_probs" in kwargs: constructor_kwargs["return_log_probs"] = kwargs["return_log_probs"] elif not constructor_kwargs.get("generate", True): # if we are not generating, we want to return log-probs constructor_kwargs["return_log_probs"] = True elif hasattr(self, "return_log_probs"): constructor_kwargs["return_log_probs"] = self.return_log_probs if "generate_kwargs" in kwargs: constructor_kwargs["generate_kwargs"] = kwargs["generate_kwargs"] elif hasattr(self, "generate_kwargs"): constructor_kwargs["generate_kwargs"] = self.generate_kwargs if "pad_output" in kwargs: constructor_kwargs["pad_output"] = kwargs["pad_output"] elif hasattr(self, "pad_output"): constructor_kwargs["pad_output"] = self.pad_output if "tokenizer_kwargs" in kwargs: constructor_kwargs["tokenizer_kwargs"] = kwargs["tokenizer_kwargs"] elif hasattr(self, "tokenizer_kwargs"): constructor_kwargs["tokenizer_kwargs"] = dict(self.tokenizer_kwargs) if ( "pad_output" in kwargs and kwargs.get("pad_output") != constructor_kwargs["tokenizer_kwargs"]["padding"] ): constructor_kwargs["tokenizer_kwargs"]["padding"] = kwargs.get( "pad_output" ) if "inplace" in kwargs: constructor_kwargs["inplace"] = kwargs["inplace"] elif hasattr(self, "inplace"): constructor_kwargs["inplace"] = self.inplace if "device" in kwargs: constructor_kwargs["device"] = kwargs["device"] elif hasattr(self, "_device"): constructor_kwargs["device"] = self._device if "layout" in kwargs: constructor_kwargs["layout"] = kwargs["layout"] elif hasattr(self, "layout"): constructor_kwargs["layout"] = self.layout if "num_samples" in kwargs: constructor_kwargs["num_samples"] = kwargs["num_samples"] elif hasattr(self, "num_samples"): constructor_kwargs["num_samples"] = self.num_samples if "chat_template_name" in kwargs: constructor_kwargs["chat_template_name"] = kwargs["chat_template_name"] elif hasattr(self, "chat_template_name"): constructor_kwargs["chat_template_name"] = self.chat_template_name if "chat_template" in kwargs: constructor_kwargs["chat_template"] = kwargs["chat_template"] elif hasattr(self, "chat_template"): constructor_kwargs["chat_template"] = self.chat_template if "history_key" in kwargs: constructor_kwargs["history_key"] = kwargs["history_key"] elif hasattr(self, "history_key"): constructor_kwargs["history_key"] = self.history_key if "text_key" in kwargs: constructor_kwargs["text_key"] = kwargs["text_key"] elif hasattr(self, "text_key"): constructor_kwargs["text_key"] = self.text_key if "tokens_key" in kwargs: constructor_kwargs["tokens_key"] = kwargs["tokens_key"] elif hasattr(self, "tokens_key"): constructor_kwargs["tokens_key"] = self.tokens_key if "masks_key" in kwargs: constructor_kwargs["masks_key"] = kwargs["masks_key"] elif hasattr(self, "masks_key"): constructor_kwargs["masks_key"] = self.masks_key if "log_probs_key" in kwargs: constructor_kwargs["log_probs_key"] = kwargs["log_probs_key"] elif hasattr(self, "log_probs_key"): constructor_kwargs["log_probs_key"] = self.log_probs_key # Create and return new instance return type(self)(**constructor_kwargs)
[docs] @set_list_to_stack(True) @_batching def forward( self, tensordict: TensorDictBase, *, tensordict_out: TensorDictBase | None = None, logits_only: bool = False, **kwargs, ) -> TensorDictBase: tensordict_orig = tensordict if not tensordict.ndim: if tensordict_out is not None: raise ValueError( "tensordict_out must not be provided when tensordict.ndim == 0. If this is needed, " "please submit an issue on github." ) # unsqueeze - squeeze the input return self.forward(lazy_stack([tensordict]), logits_only=logits_only)[0] elif tensordict.ndim > 1: if tensordict_out is not None: raise ValueError( "tensordict_out must not be provided when tensordict.ndim > 1. If this is needed, " "please submit an issue on github." ) return self.forward(tensordict.reshape(-1), logits_only=logits_only).view( tensordict.shape ) if not isinstance(tensordict, LazyStackedTensorDict): tensordict = tensordict.to_lazystack(0) _source_device = None if self._device: _source_device = tensordict.device if tensordict.device: tensordict = tensordict.copy().clear_device_() if kwargs: from vllm import SamplingParams sampling_params = SamplingParams(**kwargs) else: sampling_params = self.sampling_params if self.num_samples is not None: out = ( TensorDict( device=tensordict.device, batch_size=( tensordict.batch_size[0], self.num_samples, *tensordict.batch_size[1:], ), ) .to_lazystack(1) .to_lazystack(0) ) else: out = TensorDict( device=tensordict.device, batch_size=tensordict.batch_size ).to_lazystack(0) if self.input_mode == "history": if self.generate: out = self._from_vllm_generate_history(tensordict, sampling_params, out) else: out = self._from_vllm_logprobs_history(tensordict, sampling_params, out) elif self.input_mode == "text": if self.generate: out = self._from_vllm_generate_text(tensordict, sampling_params, out) else: out = self._from_vllm_logprobs_text(tensordict, sampling_params, out) elif self.input_mode == "tokens": if self.generate: out = self._from_vllm_generate_tokens(tensordict, sampling_params, out) else: out = self._from_vllm_logprobs_tokens(tensordict, sampling_params, out) if _source_device: out = out.to(_source_device) if tensordict_out is None: if self.inplace is True: # The output is the input tensordict_out = tensordict_orig elif self.inplace is False: # The output is the new structure tensordict_out = out elif self.inplace == "empty": # The output is empty tensordict_out = tensordict.empty() if tensordict_out is not None and tensordict_out is not out: result = tensordict_out.exclude(*self.out_keys, inplace=True) result.update(out, keys_to_update=self.out_keys) elif tensordict_out is out: result = out.select(*self.out_keys) elif self.inplace: result = out keys = list(set(self.out_keys + list(tensordict.keys(True, True)))) result = tensordict.exclude(*self.out_keys, inplace=True).update( result, keys_to_update=keys ) else: result = out return result
def _from_vllm_generate_history( self, tensordict_input: TensorDictBase, sampling_params: Any, out: TensorDictBase, ) -> TensorDictBase: """Generate text from history input.""" from torchrl.data.llm import History assert isinstance( tensordict_input, TensorDictBase ), f"tensordict_input must be TensorDictBase, got {type(tensordict_input)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" # Validate input if self.input_key not in tensordict_input: raise ValueError( f"Expected '{self.input_key}' key for history input mode, " f"but found keys: {list(tensordict_input.keys())}" ) history = tensordict_input.get(self.input_key) if not isinstance(history, History): raise TypeError( f"Expected History object for '{self.input_key}', got {type(history)}" ) # Apply chat template tokenizer_kwargs = {} if self.chat_template_name is not None: tokenizer_kwargs.setdefault("chat_template_name", self.chat_template_name) if self.chat_template is not None: tokenizer_kwargs.setdefault("chat_template", self.chat_template) tokenizer_kwargs.setdefault("add_generation_prompt", True) text_prompt = history.apply_chat_template( tokenizer=self.tokenizer, **tokenizer_kwargs ) tokenizer_kwargs.setdefault("return_assistant_tokens_mask", False) tokenizer_kwargs.setdefault("tokenize", True) tokenizer_kwargs.setdefault("padding", False) tokenizer_kwargs.setdefault("return_dict", True) response_struct = history.apply_chat_template( tokenizer=self.tokenizer, **tokenizer_kwargs ) tokens_prompt_padded = None tokens_prompt_unpadded = None if self.pad_output: tokens_prompt_padded = response_struct.get( "input_ids", as_padded_tensor=True, padding_value=self.padding_value, padding_side="left", ) else: tokens_prompt_unpadded = response_struct.get("input_ids", as_list=True) result = self._generate_from_tokens( tokens_prompt_padded=tokens_prompt_padded, tokens_prompt_unpadded=tokens_prompt_unpadded, sampling_params=sampling_params, out=out, ) # Generate using text path if self.pad_output: result[(self.tokens_key, "prompt")] = ( tokens_prompt_padded if not self.num_samples else tokens_prompt_padded.unsqueeze(1).repeat(1, self.num_samples, 1) ) else: tokens_prompt_nested = torch.nested.as_nested_tensor(tokens_prompt_unpadded) if not self.num_samples: result[(self.tokens_key, "prompt")] = tokens_prompt_nested else: for r in result.unbind(1): r[(self.tokens_key, "prompt")] = tokens_prompt_nested text_result = Text._from_tensordict(result.empty()) result.set(self.text_key, text_result) if not self.num_samples: text_result.prompt = text_prompt else: for r in result.unbind(1): r[self.text_key, "prompt"] = text_prompt with result.view(-1) as result_flat: if self.pad_output: tokens_full_padded = result_flat.get( (self.tokens_key, "full"), as_padded_tensor=True, padding_side="right", padding_value=self.padding_value, ) if tokens_full_padded is None: raise ValueError("tokens_full_padded is None") text_full = self.tokenizer.batch_decode( tokens_full_padded, skip_special_tokens=False ) else: tokens_full_unpadded = result_flat.get( (self.tokens_key, "full"), as_list=True ) # print("shapes of assistant masks", [t.shape for t in result_flat.get(("masks", "all_assistant_mask"), as_list=True)]) if tokens_full_unpadded is None: raise ValueError("tokens_full_unpadded is None") text_full = self.tokenizer.batch_decode( tokens_full_unpadded, skip_special_tokens=False ) text_prompt = result_flat[self.text_key, "prompt"] text_response = [ txt[len(prompt) :] for txt, prompt in _zip_strict(text_full, text_prompt) ] result_flat.set((self.text_key, "full"), text_full) result_flat.set((self.text_key, "response"), text_response) # Now parse the full text back to a history object, and use the extra history objects # as response history_chat = ChatHistory._from_tensordict(result.empty()) if self.num_samples is None: history_chat.prompt = history else: for h in history_chat.unbind(1): h.prompt = history with history_chat.view(-1) as history_chat_flat: prompt_histories = history_chat_flat.prompt # Extract response histories from full text h_responses = _extract_responses_from_full_histories( text_full, prompt_histories, self.chat_template_name, self.tokenizer ) history_chat_flat.response = h_responses result.set(self.history_key, history_chat) return result def _from_vllm_logprobs_history( self, tensordict_input: TensorDictBase, sampling_params: Any, out: TensorDictBase, ) -> TensorDictBase: """Compute log-probs from history input.""" assert isinstance( tensordict_input, TensorDictBase ), f"tensordict_input must be TensorDictBase, got {type(tensordict_input)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" from torchrl.data.llm import History # Validate input if self.input_key not in tensordict_input: raise ValueError( f"Expected '{self.input_key}' key for history input mode, " f"but found keys: {list(tensordict_input.keys())}" ) history = tensordict_input.get(self.input_key) if not isinstance(history, History): raise TypeError( f"Expected History object for '{self.input_key}', got {type(history)}" ) # Apply chat template tokenizer_kwargs = {} if self.chat_template_name is not None: tokenizer_kwargs.setdefault("chat_template_name", self.chat_template_name) if self.chat_template is not None: tokenizer_kwargs.setdefault("chat_template", self.chat_template) tokenizer_kwargs.setdefault("add_generation_prompt", False) text_full = history.apply_chat_template( tokenizer=self.tokenizer, **tokenizer_kwargs ) tokenizer_kwargs.setdefault("return_assistant_tokens_mask", True) tokenizer_kwargs.setdefault("tokenize", True) tokenizer_kwargs.setdefault("padding", False) tokenizer_kwargs.setdefault("return_dict", True) response_struct = history.apply_chat_template( tokenizer=self.tokenizer, **tokenizer_kwargs ) result = self._logprobs_from_tokens( response_struct=response_struct, sampling_params=sampling_params, out=out ) text_result = Text._from_tensordict(result.empty()) result.set(self.text_key, text_result) result[self.text_key, "full"] = text_full result.set(self.history_key, ChatHistory(full=history)) return result def _from_vllm_generate_text( self, td: TensorDictBase, sampling_params: Any, out: TensorDictBase ) -> TensorDictBase: """Generate text from text input.""" # Type assertions assert isinstance( td, TensorDictBase ), f"td must be TensorDictBase, got {type(td)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" # Validate input if self.input_key not in td: raise ValueError( f"Expected '{self.input_key}' key for text input mode, " f"but found keys: {list(td.keys())}" ) text = td.get(self.input_key) if text is None: raise ValueError(f"Expected '{self.input_key}' key for text input mode") return self._generate_from_text(text, sampling_params, out) def _from_vllm_logprobs_text( self, td: TensorDictBase, sampling_params: Any, out: TensorDictBase ) -> TensorDictBase: """Compute log-probs from text input.""" # Type assertions assert isinstance( td, TensorDictBase ), f"td must be TensorDictBase, got {type(td)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" # Validate input if self.input_key not in td: raise ValueError( f"Expected '{self.input_key}' key for text input mode, " f"but found keys: {list(td.keys())}" ) text = td.get(self.input_key) if text is None: raise ValueError(f"Expected '{self.input_key}' key for text input mode") return self._logprobs_from_text(text, sampling_params, out) def _from_vllm_generate_tokens( self, td: TensorDictBase, sampling_params: Any, out: TensorDictBase ) -> TensorDictBase: """Generate text from tokens input.""" # Type assertions assert isinstance( td, TensorDictBase ), f"td must be TensorDictBase, got {type(td)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" # Validate input if self.input_key not in td: raise ValueError( f"Expected '{self.input_key}' key for tokens input mode, " f"but found keys: {list(td.keys())}" ) tokens_prompt_padded = None tokens_prompt_unpadded = None if self.pad_output: tokens_prompt_padded = td.get(self.input_key) else: tokens_prompt_unpadded = list(td.get(self.input_key, as_list=True)) # make sure we remove the padding tokens tokens_prompt_unpadded = [ tokens[tokens != self.padding_value] for tokens in tokens_prompt_unpadded ] return self._generate_from_tokens( tokens_prompt_unpadded=tokens_prompt_unpadded, tokens_prompt_padded=tokens_prompt_padded, sampling_params=sampling_params, out=out, ) def _from_vllm_logprobs_tokens( self, td: TensorDictBase, sampling_params: Any, out: TensorDictBase ) -> TensorDictBase: """Compute log-probs from tokens input.""" # Type assertions assert isinstance( td, TensorDictBase ), f"td must be TensorDictBase, got {type(td)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" # Validate input if self.input_key not in td: raise ValueError( f"Expected '{self.input_key}' key for tokens input mode, " f"but found keys: {list(td.keys())}" ) tokens_full_padded = None tokens_full_unpadded = None if self.pad_output: tokens_full_padded = td.get(self.input_key) else: tokens_full_unpadded = list(td.get(self.input_key, as_list=True)) # make sure we remove the padding tokens tokens_full_unpadded = [ tokens[tokens != self.padding_value] for tokens in tokens_full_unpadded ] return self._logprobs_from_tokens( response_struct=None, tokens_full_unpadded=tokens_full_unpadded, tokens_full_padded=tokens_full_padded, sampling_params=sampling_params, out=out, ) def _cat_text( self, text: str | list[str], response_text: str | list[str] ) -> str | list[str]: """Concatenate text and response text.""" assert isinstance( text, (str, list) ), f"text must be str or list, got {type(text)}" assert isinstance( response_text, (str, list) ), f"response_text must be str or list, got {type(response_text)}" if isinstance(text, list): return [self._cat_text(t, t_) for t, t_ in _zip_strict(text, response_text)] else: return text + response_text def _generate_from_text( self, text: str | list[str] | NonTensorStack, sampling_params: Any, out: TensorDictBase, ) -> TensorDictBase: """Generate text from text input.""" # Convert text to list format if isinstance(text, str): text = [text] elif not isinstance(text, list): text = text.tolist() assert isinstance( text, (str, list) ), f"text must be str or list, got {type(text)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" generate_kwargs = {"sampling_params": sampling_params} args = () # Convert text to list format if isinstance(text, str): text = [text] elif not isinstance(text, list): text = text.tolist() if not self._remote_calls: request_output = self.model.generate(text, *args, **generate_kwargs) else: import ray request_output = ray.get( self.model.generate.remote(text, *args, **generate_kwargs) ) request_output_tc = _RequestOutput_tc.from_request_output(request_output) # Extract response tokens and text outputs = ( request_output_tc.outputs.view(-1) if self.num_samples is not None else request_output_tc.outputs ) if self.pad_output: response_tokens_padded = outputs.view(-1).get( "token_ids", as_padded_tensor=self.pad_output, padding_value=self.padding_value, padding_side="right", ) response_tokens_list = outputs.view(-1).get( "token_ids", as_list=True, ) self._check_not_padded(response_tokens_list) if self.tokenizer is not None: response_text = self.tokenizer.batch_decode( response_tokens_list, skip_special_tokens=False ) else: response_text = None # Build output TensorClass objects masks_obj = Masks._from_tensordict(out.empty()) masks_obj.all_attention_mask = None masks_obj.all_assistant_mask = None masks_obj.padded = MetaData(self.pad_output) out.set(self.masks_key, masks_obj) if self.num_samples is not None: text = [txt for txt in text for _ in range(self.num_samples)] text_obj = Text._from_tensordict(out.empty()) with text_obj.view(-1) as text_obj_flat: text_obj_flat.prompt = text text_obj_flat.response = response_text text_obj_flat.full = self._cat_text(text, response_text) out.set(self.text_key, text_obj) tokens_obj = Tokens._from_tensordict(out.empty()) with tokens_obj.view(-1) as tokens_obj_flat: tokens_obj_flat.prompt = None # We don't have prompt tokens in this path if self.pad_output: tokens_obj_flat.response = response_tokens_padded self._check_padded(response_tokens_padded) else: tokens_obj_flat.response = response_tokens_list self._check_not_padded(response_tokens_list) tokens_obj_flat.full = ( None # we don't have prompt tokens in this path so no all_tokens either ) tokens_obj.padded = MetaData(self.pad_output) out.set(self.tokens_key, tokens_obj) if self.return_log_probs: log_probs_obj = LogProbs._from_tensordict(out.empty()) with log_probs_obj.view(-1) as log_probs_obj_flat: if self.pad_output: log_probs_padded = outputs.get( "logprobs", as_padded_tensor=self.pad_output, padding_value=self.padding_value, padding_side="right", ) self._check_padded(log_probs_padded) log_probs_obj_flat.response = log_probs_padded log_probs_obj_flat.full = log_probs_padded else: log_probs_list = outputs.get( "logprobs", as_list=True, ) self._check_not_padded(log_probs_list) log_probs_obj_flat.response = log_probs_list log_probs_obj_flat.full = log_probs_list log_probs_obj_flat.prompt = None log_probs_obj.padded = MetaData(self.pad_output) out.set(self.log_probs_key, log_probs_obj) return out def _logprobs_from_text( self, text: str | list[str] | NonTensorStack, sampling_params: Any, out: TensorDictBase, ) -> TensorDictBase: """Compute log-probs from text input.""" # Convert text to list format if isinstance(text, str): text = [text] elif not isinstance(text, list): text = text.tolist() assert isinstance( text, (str, list) ), f"text must be str or list, got {type(text)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" # Tokenize the text if self.tokenizer is None: raise ValueError( "Tokenizer is required for log-probs computation with text input" ) # Tokenize the text tokenized_output = self.tokenizer(text, **self.tokenizer_kwargs) if self.pad_output: tokens_full_padded = tokenized_output["input_ids"] attention_mask_full_padded = tokenized_output["attention_mask"] tokens_full_list = self._to_list( tokens_full_padded, attention_mask_full_padded ) else: tokens_full_unpadded = tokenized_output["input_ids"] tokens_full_list = self._to_list(tokens_full_unpadded, None) attention_mask_full_unpadded = tokenized_output["attention_mask"] attention_mask_full_unpadded = [ am.bool() if isinstance(am, torch.Tensor) else torch.tensor(am, dtype=torch.bool) for am in attention_mask_full_unpadded ] # Convert to list format for vLLM generate_kwargs = { "sampling_params": sampling_params, "prompt_token_ids": tokens_full_list, } # Generate with vLLM to get prompt_logprobs if not self._remote_calls: request_output = self.model.generate(**generate_kwargs) else: import ray request_output = ray.get(self.model.generate.remote(**generate_kwargs)) request_output_tc = _RequestOutput_tc.from_request_output(request_output) # Extract log-probs from prompt_logprobs if self.pad_output: # For padded case, use all prompt_logprobs log_probs_full_padded = request_output_tc.get( "prompt_logprobs", as_padded_tensor=True, padding_value=0, padding_side="left", ) # Mask out padding attention_mask_full_padded = tokens_full_padded != self.padding_value log_probs_full_padded = torch.where( attention_mask_full_padded, log_probs_full_padded, 0.0 ) else: # For unpadded case, extract from each sequence log_probs_full_unpadded = request_output_tc.get( "prompt_logprobs", as_list=True ) self._check_not_padded(log_probs_full_unpadded) masks_obj = Masks._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) if self.pad_output: self._check_padded(attention_mask_full_padded) masks_obj.all_attention_mask = attention_mask_full_padded.bool() else: self._check_not_padded(attention_mask_full_unpadded) masks_obj.all_attention_mask = attention_mask_full_unpadded masks_obj.padded = MetaData(self.pad_output) out.set(self.masks_key, masks_obj) # Build output TensorClass objects text_obj = Text._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) text_obj.prompt = None text_obj.response = None text_obj.full = text out.set(self.text_key, text_obj) tokens_obj = Tokens._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) if self.pad_output: self._check_padded(tokens_full_padded) tokens_obj.full = tokens_full_padded else: tokens_obj.full = tokens_full_unpadded tokens_obj.response = None tokens_obj.padded = MetaData(self.pad_output) out.set(self.tokens_key, tokens_obj) if self.return_log_probs: log_probs_obj = LogProbs._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) if self.pad_output: self._check_padded(log_probs_full_padded) log_probs_obj.full = log_probs_full_padded else: self._check_not_padded(log_probs_full_unpadded) log_probs_obj.full = log_probs_full_unpadded log_probs_obj.response = None log_probs_obj.padded = MetaData(self.pad_output) out.set(self.log_probs_key, log_probs_obj) return out def _cat_tensors( self, tokens: list[torch.Tensor] | torch.Tensor, response_tokens: list[torch.Tensor] | torch.Tensor, ) -> list[torch.Tensor] | torch.Tensor: """Concatenate tokens and response tokens.""" if isinstance(tokens, list) or isinstance(response_tokens, list): return [ self._cat_tensors(t, t_) for t, t_ in _zip_strict(tokens, response_tokens) ] else: return torch.cat([tokens, response_tokens], dim=-1) def _generate_from_tokens( self, tokens_prompt_unpadded: list[torch.Tensor] | None, tokens_prompt_padded: torch.Tensor | None, sampling_params: Any, out: TensorDictBase, ) -> TensorDictBase: """Generate text from tokens input.""" assert isinstance( tokens_prompt_padded, (torch.Tensor, type(None)) ), f"tokens_prompt_padded must be torch.Tensor or None, got {type(tokens_prompt_padded)}" assert isinstance( tokens_prompt_unpadded, (list, type(None)) ), f"tokens_prompt_unpadded must be list or None, got {type(tokens_prompt_unpadded)}" assert isinstance( sampling_params, SamplingParams ), f"sampling_params must be SamplingParams, got {type(sampling_params)}" assert isinstance( out, TensorDictBase ), f"out must be TensorDictBase, got {type(out)}" generate_kwargs = {"sampling_params": sampling_params} args = () empirical_attention_mask = None if tokens_prompt_unpadded is None: # TODO: To be on the safe side, we may do this even in the unpadded case since we're not sure # the user passed an unpadded tensor in the first place. empirical_attention_mask = tokens_prompt_padded != self.padding_value tokens_prompt_list = self._to_list( tokens_prompt_padded, empirical_attention_mask ) else: tokens_prompt_list = self._to_list(tokens_prompt_unpadded, None) generate_kwargs.update({"prompt_token_ids": tokens_prompt_list}) if not self._remote_calls: request_output = self.model.generate(*args, **generate_kwargs) else: import ray request_output = ray.get( self.model.generate.remote(*args, **generate_kwargs) ) request_output_tc = _RequestOutput_tc.from_request_output(request_output) # Extract response tokens and text outputs = ( request_output_tc.outputs.view(-1) if self.num_samples is not None else request_output_tc.outputs ) if self.pad_output: tokens_response_padded = outputs.get( "token_ids", as_padded_tensor=self.pad_output, padding_value=self.padding_value, padding_side="right", ) self._check_padded(tokens_response_padded) tokens_response_unpadded = outputs.get( "token_ids", as_list=True, ) self._check_not_padded(tokens_response_unpadded) tokens_obj = Tokens._from_tensordict(out.empty()) if self.pad_output: self._check_padded(tokens_response_padded) self._check_padded(tokens_prompt_padded) else: self._check_not_padded(tokens_response_unpadded) self._check_not_padded(tokens_prompt_unpadded) if self.num_samples is not None: # replicate tokens for i in range(self.num_samples): tokens_obj[:, i].prompt = ( tokens_prompt_unpadded if not self.pad_output else tokens_prompt_padded ) else: tokens_obj.prompt = ( tokens_prompt_unpadded if not self.pad_output else tokens_prompt_padded ) with tokens_obj.view(-1) as tokens_obj_flat: if self.pad_output: tokens_obj_flat.response = tokens_response_padded tokens_full_padded = self._cat_tensors( tokens_obj_flat.prompt, tokens_response_padded ) tokens_obj_flat.full = tokens_full_padded else: tokens_obj_flat.response = tokens_response_unpadded tokens_full_unpadded = self._cat_tensors( tokens_obj_flat.get("prompt", as_list=True), tokens_response_unpadded, ) tokens_obj_flat.full = tokens_full_unpadded tokens_obj.padded = MetaData(self.pad_output) out.set(self.tokens_key, tokens_obj) masks_obj = Masks._from_tensordict(out.empty()) # self.return_tokens must be True if self.pad_output: # Get "real" attention masks full_attention_mask_padded = tokens_obj.get("full") != self.padding_value masks_obj.all_attention_mask = full_attention_mask_padded.bool() else: # Get "real" attention masks # We can use select to avoid batch-size problems _td = torch.ones_like( out.select(("tokens", "full")) .copy() .rename_key_(("tokens", "full"), "all_attention_mask") ).bool() del _td["tokens"] masks_obj.update(_td) masks_obj.all_assistant_mask = None masks_obj.padded = MetaData(self.pad_output) out.set(self.masks_key, masks_obj) if self.return_log_probs: if self.pad_output: log_probs_padded = outputs.get( "logprobs", as_padded_tensor=self.pad_output, padding_value=self.padding_value, padding_side="right", ) else: log_probs_list = outputs.get( "logprobs", as_list=True, ) self._check_not_padded(log_probs_list) if self.num_samples is None: # TODO: this is not correct, we should use the prompt_logprobs # but they're not returned by vLLM if self.pad_output: prompt_logprobs_padded = request_output_tc.get( "prompt_logprobs", as_padded_tensor=self.pad_output, padding_value=self.padding_value, padding_side="right", ) if ( prompt_logprobs_padded.shape[-1] != tokens_prompt_padded.shape[-1] ): tshape = tokens_prompt_padded.shape oshape = prompt_logprobs_padded.shape # it could be that the input was padded already - padding again then prompt_logprobs_padded = torch.cat( [ prompt_logprobs_padded.new_zeros( tshape[:-1] + (tshape[-1] - oshape[-1],) ), prompt_logprobs_padded, ], -1, ) else: prompt_logprobs_list = request_output_tc.get( "prompt_logprobs", as_list=True, ) self._check_not_padded(prompt_logprobs_list) log_probs_obj = LogProbs._from_tensordict(out.empty()) if self.pad_output: self._check_padded(log_probs_padded) if self.num_samples is None: self._check_padded(prompt_logprobs_padded) log_probs_obj.prompt = prompt_logprobs_padded else: self._check_not_padded(log_probs_list) if self.num_samples is None: self._check_not_padded(prompt_logprobs_list) log_probs_obj.prompt = prompt_logprobs_list with log_probs_obj.view(-1) as log_probs_obj_flat: log_probs_obj_flat.response = ( log_probs_padded if self.pad_output else log_probs_list ) if self.num_samples is None: if self.pad_output: log_probs_obj_flat.full = self._cat_tensors( log_probs_obj_flat.prompt, log_probs_padded ) else: log_probs_obj_flat.full = self._cat_tensors( log_probs_obj_flat.get("prompt", as_list=True), log_probs_list, ) else: log_probs_obj_flat.full = None log_probs_obj.padded = MetaData(self.pad_output) out.set(self.log_probs_key, log_probs_obj) return out def _logprobs_from_tokens( self, *, response_struct: TensorDictBase | None = None, tokens_full_unpadded: list[torch.Tensor] | None = None, tokens_full_padded: torch.Tensor | None = None, sampling_params: Any | None = None, out: TensorDictBase | None = None, ) -> TensorDictBase: """Compute log-probs from tokens input.""" assert isinstance( response_struct, (TensorDictBase, type(None)) ), f"response_struct must be TensorDictBase or None, got {type(response_struct)}" assert isinstance( tokens_full_unpadded, (list, type(None)) ), f"tokens_full_unpadded must be list or None, got {type(tokens_full_unpadded)}" assert isinstance( tokens_full_padded, (torch.Tensor, type(None)) ), f"tokens_full_padded must be torch.Tensor or None, got {type(tokens_full_padded)}" assert isinstance( sampling_params, (SamplingParams, type(None)) ), f"sampling_params must be SamplingParams or None, got {type(sampling_params)}" assert isinstance( out, (TensorDictBase, type(None)) ), f"out must be TensorDictBase or None, got {type(out)}" # Convert to list format for vLLM if response_struct is not None: tokens_full_padded = response_struct.get( "input_ids", as_padded_tensor=True, padding_value=self.padding_value, padding_side="left", ) attention_mask_full_padded = response_struct.get( "attention_mask", as_padded_tensor=True, padding_value=False, padding_side="left", ).bool() attention_mask_full_unpadded = _unpad_tensors( attention_mask_full_padded, attention_mask_full_padded, as_nested=False ) elif tokens_full_unpadded is not None: tokens_full_padded = pad_sequence( tokens_full_unpadded, padding_value=self.padding_value, batch_first=True, padding_side="left", ) attention_mask_full_unpadded = [ t != self.padding_value for t in tokens_full_unpadded ] attention_mask_full_padded = pad_sequence( attention_mask_full_unpadded, padding_value=False, batch_first=True, padding_side="left", ) elif tokens_full_padded is not None: attention_mask_full_padded = tokens_full_padded != self.padding_value else: raise ValueError("Either response_struct or tokens must be provided") assert isinstance(tokens_full_padded, torch.Tensor) assert isinstance(attention_mask_full_padded, torch.Tensor) if tokens_full_unpadded is None: tokens_full_list = self._to_list( tokens_full_padded, attention_mask_full_padded ) else: tokens_full_list = self._to_list(tokens_full_unpadded, None) generate_kwargs = { "sampling_params": sampling_params, "prompt_token_ids": tokens_full_list, } # Generate with vLLM to get prompt_logprobs if not self._remote_calls: tokens_out_stuct = self.model.generate(**generate_kwargs) else: import ray tokens_out_stuct = ray.get(self.model.generate.remote(**generate_kwargs)) request_output_tc = _RequestOutput_tc.from_request_output(tokens_out_stuct) # For unpadded case, extract from each sequence log_probs_full_unpadded = request_output_tc.get("prompt_logprobs", as_list=True) # Extract log-probs from prompt_logprobs if self.pad_output: # For padded case, use all prompt_logprobs if attention_mask_full_padded is not None: attention_mask_full_padded = tokens_full_padded != self.padding_value log_probs_full_padded = torch.zeros_like( tokens_full_padded, dtype=torch.get_default_dtype() ) log_probs_full_padded[attention_mask_full_padded] = torch.cat( log_probs_full_unpadded, -1 ) else: self._check_not_padded(log_probs_full_unpadded) assistant_mask_full_padded = None if response_struct is not None: assistant_mask_full_padded = response_struct.get( "assistant_masks", as_padded_tensor=True, padding_side="left", padding_value=0, ) if assistant_mask_full_padded is not None: assistant_mask_full_padded = assistant_mask_full_padded.bool() if not self.pad_output: assistant_mask_full_unpadded = _unpad_tensors( assistant_mask_full_padded, attention_mask_full_padded, as_nested=False, ) else: assistant_mask_full_unpadded = None else: assistant_mask_full_unpadded = None masks_obj = Masks._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) if self.pad_output: self._check_padded(attention_mask_full_padded) masks_obj.all_attention_mask = attention_mask_full_padded.bool() if assistant_mask_full_padded is not None: masks_obj.all_assistant_mask = assistant_mask_full_padded else: self._check_not_padded(attention_mask_full_unpadded) masks_obj.all_attention_mask = attention_mask_full_unpadded if assistant_mask_full_unpadded is not None: masks_obj.all_assistant_mask = assistant_mask_full_unpadded masks_obj.padded = MetaData(self.pad_output) out.set(self.masks_key, masks_obj) tokens_obj = Tokens._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) if self.pad_output: self._check_padded(tokens_full_padded) tokens_obj.full = tokens_full_padded else: tokens_obj.full = tokens_full_unpadded tokens_obj.response = None tokens_obj.padded = MetaData(self.pad_output) out.set(self.tokens_key, tokens_obj) log_probs_obj = LogProbs._from_tensordict( TensorDict(batch_size=out.batch_size).to_lazystack(0) ) if self.pad_output: self._check_padded(log_probs_full_padded) log_probs_obj.full = log_probs_full_padded else: self._check_not_padded(log_probs_full_unpadded) log_probs_obj.full = log_probs_full_unpadded log_probs_obj.response = None log_probs_obj.padded = MetaData(self.pad_output) out.set(self.log_probs_key, log_probs_obj) return out def _to_list( self, tokens_padded: torch.Tensor | list[torch.Tensor], attention_mask_padded: torch.Tensor | None, ) -> list[list[int]]: """Converts a tensor of integers into a masked list (of lists) of integers.""" if isinstance(tokens_padded, torch.Tensor): parent = [] queue = collections.deque() if attention_mask_padded is None: attention_mask_padded = torch.ones_like(tokens_padded) queue.append((tokens_padded, attention_mask_padded.bool(), parent)) while queue: token_tensor, attention_mask_bool, _parent = queue.popleft() if token_tensor.ndim == 1: _parent.extend(token_tensor[attention_mask_bool].tolist()) else: _parent.extend([[] for _ in range(token_tensor.shape[0])]) queue.extend( [ (t, m, local_parent) for t, m, local_parent in zip( token_tensor, attention_mask_bool, _parent ) ] ) tokens_list = parent elif isinstance(tokens_padded, list): parent = [] queue = collections.deque() queue.append((tokens_padded, parent)) while queue: tokens_list, _parent = queue.popleft() if isinstance(tokens_list, list) and isinstance( tokens_list[0], (list, torch.Tensor) ): _parent.extend([[] for _ in tokens_list]) queue.extend( [ (t, local_parent) for t, local_parent in zip(tokens_list, _parent) ] ) continue elif isinstance(tokens_list, torch.Tensor): tokens_list = tokens_list.tolist() _parent.extend(tokens_list) tokens_list = parent return tokens_list @_classproperty def CompletionOutput_tc(cls): if vllm is None: raise ImportError("vllm is required for CompletionOutput_tc") if hasattr(cls, "_CompletionOutput_tc"): return cls._CompletionOutput_tc CompletionOutput_tc = from_dataclass(vllm.outputs.CompletionOutput) # type: ignore cls._CompletionOutput_tc = CompletionOutput_tc return CompletionOutput_tc
[docs] def get_dist( self, tensordict: TensorDictBase, tensordict_out: TensorDictBase | None = None, logits_key: NestedKey = "logits", mask_key: NestedKey | None = None, as_padded_tensor: bool | None = None, as_nested_tensor: bool | None = None, padding_value: float | None = None, padding_side: str = "right", layout: torch.layout | None = None, **kwargs, ) -> D.Distribution: """Get distribution from logits/log-probs with optional masking. vLLM does not return logits, so this method is not supported. """ raise NotImplementedError( "vLLM does not return logits, so get_dist is not supported" )
[docs] def get_dist_with_prompt_mask( self, tensordict: TensorDictBase, tokens_key: NestedKey = ("tokens", "full"), logits_key: NestedKey = "logits", assistant_mask_key: NestedKey = ("masks", "all_assistant_mask"), attention_mask_key: NestedKey = ("masks", "all_attention_mask"), **kwargs, ) -> D.Distribution: """Get distribution masked to only include response tokens (exclude prompt). vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_dist_with_prompt_mask is not supported" )
def _get_dist_with_assistant_mask( self, tensordict: TensorDictBase, assistant_mask_key: NestedKey = ("masks", "all_assistant_mask"), logits_key: NestedKey = "logits", **kwargs, ) -> D.Distribution: """Get distribution masked to only include assistant tokens. vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_dist_with_assistant_mask is not supported" ) def _get_dist_with_attention_mask( self, tensordict: TensorDictBase, attention_mask_key: NestedKey = ("masks", "all_attention_mask"), logits_key: NestedKey = "logits", **kwargs, ) -> D.Distribution: """Get distribution masked using attention mask. vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_dist_with_attention_mask is not supported" ) def _get_dist_with_custom_mask( self, tensordict: TensorDictBase, mask: torch.Tensor, logits_key: NestedKey = "logits", **kwargs, ) -> D.Distribution: """Get distribution with custom mask. vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_dist_with_custom_mask is not supported" ) # Convenience methods for common LLM training scenarios def _get_sft_dist(self, tensordict: TensorDictBase, **kwargs) -> D.Distribution: """Get distribution suitable for SFT loss (response tokens only). vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_sft_dist is not supported" ) def _get_rlhf_dist(self, tensordict: TensorDictBase, **kwargs) -> D.Distribution: """Get distribution suitable for RLHF loss (assistant tokens only). vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_rlhf_dist is not supported" ) def _get_generic_dist(self, tensordict: TensorDictBase, **kwargs) -> D.Distribution: """Get distribution suitable for generic losses (all tokens). vLLM does not return logits, so this method is not supported. This is a provisional method that will be replaced by the `get_dist` method once we have a better masking strategy. """ raise NotImplementedError( "vLLM does not return logits, so get_generic_dist is not supported" )
class _RequestOutput_tc(TensorClass["nocast"]): """TensorClass wrapper for vLLM RequestOutput.""" request_id: str prompt: str prompt_token_ids: torch.Tensor prompt_logprobs: torch.Tensor outputs: Any finished: str metrics: str lora_request: str encoder_prompt: str encoder_prompt_token_ids: str num_cached_tokens: torch.Tensor def __post_init__(self): CompletionOutput_tc = vLLMWrapper.CompletionOutput_tc def postproc(output): def get_logprob(output): t = [] for v, tid in zip(output.logprobs, output.token_ids): t.append( v[int(tid)]["logprob"] if v[tid].get("logprob") is not None else 0.0 ) return torch.tensor(t) if output.logprobs: output.logprobs = get_logprob(output) output.token_ids = torch.as_tensor(output.token_ids) return output if isinstance(self.outputs, list): outputs = self.outputs outputs = [ postproc(from_dataclass(output, dest_cls=CompletionOutput_tc)) for output in outputs ] if len(outputs) == 1: self.outputs = outputs[0] else: # Check if we can stack the outputs (they should have the same shape) try: self.outputs = lazy_stack(outputs) except RuntimeError: # If stacking fails (different sizes), keep as list self.outputs = outputs @classmethod def from_request_output( cls, requests: RequestOutput | list[RequestOutput] ) -> _RequestOutput_tc | list[_RequestOutput_tc]: """Create _RequestOutput_tc from vLLM RequestOutput.""" # Type assertions assert isinstance( requests, (RequestOutput, list) ), f"requests must be RequestOutput or list, got {type(requests)}" # Check if we can stack the outputs try: out = lazy_stack( [ cls( request_id=request.request_id, prompt=request.prompt, prompt_token_ids=torch.as_tensor(request.prompt_token_ids), prompt_logprobs=torch.tensor( [ v[int(tid)].logprob if v is not None else 0.0 for v, tid in _zip_strict( request.prompt_logprobs, request.prompt_token_ids ) ] ) if request.prompt_logprobs is not None else torch.tensor([]), outputs=request.outputs, finished=request.finished, metrics=request.metrics, lora_request=request.lora_request, encoder_prompt=request.encoder_prompt, encoder_prompt_token_ids=request.encoder_prompt_token_ids, num_cached_tokens=torch.as_tensor(request.num_cached_tokens), ) for request in requests ] ) return out except RuntimeError: # If stacking fails, return a list of individual _RequestOutput_tc objects return [ cls( request_id=request.request_id, prompt=request.prompt, prompt_token_ids=torch.as_tensor(request.prompt_token_ids), prompt_logprobs=torch.tensor( [ v[int(tid)].logprob if v is not None else 0.0 for v, tid in _zip_strict( request.prompt_logprobs, request.prompt_token_ids ) ] ) if request.prompt_logprobs is not None else torch.tensor([]), outputs=request.outputs, finished=request.finished, metrics=request.metrics, lora_request=request.lora_request, encoder_prompt=request.encoder_prompt, encoder_prompt_token_ids=request.encoder_prompt_token_ids, num_cached_tokens=torch.as_tensor(request.num_cached_tokens), ) for request in requests ]
[docs]class RemotevLLMWrapper: """A remote Ray actor wrapper for vLLMWrapper that provides a simplified interface. This class wraps a vLLMWrapper instance as a Ray actor, allowing remote execution while providing a clean interface that doesn't require explicit `remote()` and `get()` calls. Args: model (vllm.LLM | str): The vLLM model to wrap. - If a string, it will be passed to `vllm.LLM` and downloaded on the remote worker. - If a vLLM LLM object, it must be a remote model with a ray handle (not a local model). Local vLLM models are not serializable and will raise an error. max_concurrency (int, optional): Maximum number of concurrent calls to the remote actor. Defaults to 16. validate_model (bool, optional): Whether to validate the model. Defaults to True. **kwargs: All other arguments are passed directly to vLLMWrapper. Example: >>> import ray >>> from torchrl.modules.llm.policies import RemotevLLMWrapper >>> >>> # Initialize Ray if not already done >>> if not ray.is_initialized(): ... ray.init() >>> >>> # Create remote wrapper >>> remote_wrapper = RemotevLLMWrapper( ... model="gpt2", ... input_mode="history", ... generate=True, ... generate_kwargs={"max_new_tokens": 50} ... ) >>> >>> # Use like a regular wrapper (no remote/get calls needed) >>> result = remote_wrapper(tensordict_input) >>> print(result["text"].response) """ def __init__( self, model, max_concurrency: int = 16, validate_model: bool = True, **kwargs ): import ray # Validate model parameter - for vLLM, we accept strings or vLLM LLM objects with ray handles if not isinstance(model, str) and validate_model: # Check if it's a vLLM LLM object with ray handle try: import vllm if isinstance(model, vllm.LLM): # Check if it has a ray handle (remote model) if not hasattr(model, "_llm_engine") or not hasattr( model._llm_engine, "model_executor" ): raise ValueError( "For RemotevLLMWrapper, when passing a vLLM LLM object, " "it should be a remote vLLM model with a ray handle. " "Local vLLM models are not serializable. " "Consider using a string model name/path instead. " "You can bypass this check by setting validate_model=False." ) else: raise ValueError( f"For RemotevLLMWrapper, the model parameter must be a string " f"(model name or path) or a remote vLLM LLM object. Got type: {type(model)}. " f"Local vLLM models are not serializable. " "You can bypass this check by setting validate_model=False." ) except ImportError: raise ValueError( f"For RemotevLLMWrapper, the model parameter must be a string " f"(model name or path) or a remote vLLM LLM object. Got type: {type(model)}. " f"vLLM is not available, so only string model names/paths are supported. " "You can bypass this check by setting validate_model=False." ) if not ray.is_initialized(): ray.init() # Create the remote actor self._remote_wrapper = ( ray.remote(vLLMWrapper) .options(max_concurrency=max_concurrency) .remote(model, **kwargs) ) def __call__(self, tensordict, **kwargs): """Forward pass that automatically handles remote execution.""" import ray return ray.get(self._remote_wrapper.__call__.remote(tensordict, **kwargs))
[docs] def forward(self, tensordict, **kwargs): """Forward pass that automatically handles remote execution.""" import ray return ray.get(self._remote_wrapper.forward.remote(tensordict, **kwargs))
[docs] def get_new_version(self, **kwargs): """Get a new version of the wrapper with altered parameters.""" import ray return ray.get(self._remote_wrapper.get_new_version.remote(**kwargs))
[docs] def get_dist(self, tensordict, **kwargs): """Get distribution from logits/log-probs with optional masking.""" import ray return ray.get(self._remote_wrapper.get_dist.remote(tensordict, **kwargs))
[docs] def get_dist_with_prompt_mask(self, tensordict, **kwargs): """Get distribution masked to only include response tokens (exclude prompt).""" import ray return ray.get( self._remote_wrapper.get_dist_with_prompt_mask.remote(tensordict, **kwargs) )
def _get_dist_with_assistant_mask(self, tensordict, **kwargs): """Get distribution masked to only include assistant tokens.""" import ray return ray.get( self._remote_wrapper._get_dist_with_assistant_mask.remote( tensordict, **kwargs ) ) def _get_dist_with_attention_mask(self, tensordict, **kwargs): """Get distribution masked using attention mask.""" import ray return ray.get( self._remote_wrapper._get_dist_with_attention_mask.remote( tensordict, **kwargs ) ) def _get_dist_with_custom_mask(self, tensordict, **kwargs): """Get distribution with custom mask.""" import ray return ray.get( self._remote_wrapper._get_dist_with_custom_mask.remote(tensordict, **kwargs) ) def _get_sft_dist(self, tensordict, **kwargs): """Get distribution suitable for SFT loss (response tokens only).""" import ray return ray.get(self._remote_wrapper._get_sft_dist.remote(tensordict, **kwargs)) def _get_rlhf_dist(self, tensordict, **kwargs): """Get distribution suitable for RLHF loss (assistant tokens only).""" import ray return ray.get(self._remote_wrapper._get_rlhf_dist.remote(tensordict, **kwargs)) def _get_generic_dist(self, tensordict, **kwargs): """Get distribution suitable for generic losses (all tokens).""" import ray return ray.get( self._remote_wrapper._get_generic_dist.remote(tensordict, **kwargs) )
[docs] def log_prob(self, data, **kwargs): """Compute log probabilities.""" import ray return ray.get(self._remote_wrapper.log_prob.remote(data, **kwargs))
[docs] def cleanup_batching(self): """Clean up batching resources.""" import ray return ray.get(self._remote_wrapper.cleanup_batching.remote())
def __del__(self): """Cleanup when the wrapper is destroyed.""" try: import ray if hasattr(self, "_remote_wrapper") and ray.is_initialized(): # Clean up batching resources try: ray.get(self._remote_wrapper.cleanup_batching.remote()) except Exception: pass # Ignore cleanup errors during destruction except Exception: pass # Ignore any errors during cleanup def __enter__(self): """Context manager entry.""" return self def __exit__(self, exc_type, exc_val, exc_tb): """Context manager exit with cleanup.""" self.cleanup_batching()
[docs] def get_batching_state(self): """Get the current batching state.""" import ray return ray.get(self._remote_wrapper.get_batching_state.remote())
@property def generate(self): """Whether text generation is enabled.""" import ray return ray.get(self._remote_wrapper.generate.remote) @property def pad_output(self): """Whether output sequences are padded.""" import ray return ray.get(self._remote_wrapper.pad_output.remote) @property def text_key(self): """The key for text output.""" import ray return ray.get(self._remote_wrapper.text_key.remote) @property def tokens_key(self): """The key for tokens output.""" import ray return ray.get(self._remote_wrapper.tokens_key.remote) @property def masks_key(self): """The key for masks output.""" import ray return ray.get(self._remote_wrapper.masks_key.remote) @property def log_probs_key(self): """The key for log probabilities output.""" import ray return ray.get(self._remote_wrapper.log_probs_key.remote) @property def in_keys(self): """The input keys.""" import ray return ray.get(self._remote_wrapper.in_keys.remote) @property def out_keys(self): """The output keys.""" import ray return ray.get(self._remote_wrapper.out_keys.remote) @property def inplace(self): """Whether in-place operations are used.""" import ray return ray.get(self._remote_wrapper.inplace.remote) @property def device(self): """The device used for computation.""" import ray return ray.get(self._remote_wrapper.device.remote) @property def layout(self): """The layout used for output tensors.""" import ray return ray.get(self._remote_wrapper.layout.remote) @property def num_samples(self): """The number of samples to generate.""" import ray return ray.get(self._remote_wrapper.num_samples.remote) @property def batching(self): """Whether batching is enabled.""" import ray return ray.get(self._remote_wrapper.batching.remote) @property def collector(self): """The collector associated with the module.""" import ray return ray.get(self._remote_wrapper.collector.remote) @property def log_prob_keys(self): """The keys for log probabilities.""" import ray return ray.get(self._remote_wrapper.log_prob_keys.remote) @log_prob_keys.setter def log_prob_keys(self, value): """Set the keys for log probabilities.""" import ray ray.get(self._remote_wrapper.log_prob_keys.remote(value)) @property def dist_params_keys(self): """The keys for distribution parameters.""" import ray return ray.get(self._remote_wrapper.dist_params_keys.remote) @property def dist_sample_keys(self): """The keys for distribution samples.""" import ray return ray.get(self._remote_wrapper.dist_sample_keys.remote)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources