Source code for torchrl.envs.llm.transforms.dataloading
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import warnings
from collections import deque
from collections.abc import Callable, Iterable, Mapping
from typing import Any, Literal, TypeVar
import torch
from tensordict import is_tensor_collection, lazy_stack, TensorDict, TensorDictBase
from torchrl.data.tensor_specs import Composite, DEVICE_TYPING, TensorSpec
from torchrl.envs.common import EnvBase
# Import ray service components
from torchrl.envs.llm.transforms.ray_service import (
_map_input_output_device,
_RayServiceMetaClass,
RayTransform,
)
from torchrl.envs.transforms.transforms import TensorDictPrimer, Transform
from torchrl.envs.utils import make_composite_from_td
T = TypeVar("T")
[docs]def as_nested_tensor(list_of_tensordicts: list[TensorDictBase]) -> TensorDictBase:
"""Stacks a list of tensordicts into a single tensordict with nested tensors.
Args:
list_of_tensordicts (list[TensorDictBase]): A list of tensordicts to stack.
Returns:
TensorDictBase: A tensordict with nested tensors.
"""
def _as_nested_tensor(*list_of_tensors):
return torch.nested.as_nested_tensor(list_of_tensors, layout=torch.jagged)
batch_size = list(list_of_tensordicts[0].shape)
batch_size.insert(0, len(list_of_tensordicts))
result: TensorDictBase = list_of_tensordicts[0].apply( # type: ignore[assignment]
_as_nested_tensor, *list_of_tensordicts[1:], batch_size=batch_size
)
return result
[docs]def as_padded_tensor(
list_of_tensordicts: list[TensorDictBase], dim=0, stack_dim: int = 0
) -> TensorDictBase:
"""Stacks a list of tensordicts into a single tensordict with padded tensors.
Args:
list_of_tensordicts (list[[TensorDictBase]]): A list of tensordicts to stack.
dim (int, optional): The dimension along which to pad. Defaults to 0.
stack_dim (int, optional): The dimension along which to stack. Defaults to 0.
Returns:
TensorDictBase: A tensordict with padded tensors.
"""
def _stack_tensors(*list_of_tensors):
if dim < 0:
raise ValueError("dim must be >= 0")
max_length = max([t.size(dim) for t in list_of_tensors])
def pad_tensor(tensor):
padding_length = max_length - tensor.size(dim)
shape = [
s if i != dim else padding_length for i, s in enumerate(tensor.shape)
]
return torch.cat((tensor.new_zeros(shape), tensor), dim=dim)
return torch.stack([pad_tensor(t) for t in list_of_tensors], dim=stack_dim)
batch_size = list(list_of_tensordicts[0].shape)
batch_size.insert(dim, len(list_of_tensordicts))
result: TensorDictBase = list_of_tensordicts[0].apply( # type: ignore[assignment]
_stack_tensors, *list_of_tensordicts[1:], batch_size=batch_size
)
return result
[docs]class RayDataLoadingPrimer(RayTransform):
"""A :class:`~torchrl.envs.llm.transforms.dataloading.DataLoadingPrimer` that creates a single actor that can be shared by multiple environments.
This class creates a Ray remote actor from DataLoadingPrimer that can be shared across multiple workers.
All method calls are delegated to the remote actor, ensuring that multiple environments iterate over
the same shared dataloader.
Keyword Args:
dataloader: A dataloader object to be used directly. Ray will handle serialization.
dataloader_factory: A callable that returns a dataloader. This allows for explicit
resource control and avoids serialization issues.
num_cpus (int, optional): Number of CPUs to allocate to the Ray actor.
Defaults to the dataloader's num_workers if available, otherwise 1.
num_gpus (int, optional): Number of GPUs to allocate to the Ray actor. Defaults to 0.
actor_name (str, optional): Name of the Ray actor to use. If provided, the actor will be reused if it already exists.
**kwargs: Additional keyword arguments to pass to DataLoadingPrimer.
Note:
Exactly one of `dataloader` or `dataloader_factory` must be provided.
Examples:
>>> # Option 1: Using a dataloader factory for explicit resource control
>>> def create_dataloader():
... return torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4)
>>> primer1 = RayDataLoadingPrimer(dataloader_factory=create_dataloader, num_cpus=4)
>>> primer2 = RayDataLoadingPrimer(dataloader_factory=create_dataloader, num_cpus=4) # Same shared actor
>>> # Option 2: Pass dataloader directly (Ray handles serialization)
>>> dataloader = torch.utils.data.DataLoader(dataset, batch_size=32, num_workers=4)
>>> primer1 = RayDataLoadingPrimer(dataloader=dataloader) # num_cpus=4 inferred from num_workers
>>> primer2 = RayDataLoadingPrimer(dataloader=dataloader) # Same shared actor
"""
def __init__(
self,
*,
dataloader=None,
dataloader_factory=None,
num_cpus=None,
num_gpus=0,
device: DEVICE_TYPING | None = None,
actor_name: str | None = None,
**kwargs,
):
# Validate arguments: exactly one of dataloader or dataloader_factory must be provided
if dataloader is not None and dataloader_factory is not None:
raise ValueError(
"Cannot provide both 'dataloader' and 'dataloader_factory'. Choose one."
)
if dataloader is None and dataloader_factory is None:
raise ValueError(
"Must provide exactly one of 'dataloader' or 'dataloader_factory'."
)
# Infer num_cpus from dataloader if not specified
if num_cpus is None:
if dataloader is not None:
num_cpus = getattr(dataloader, "num_workers", 1)
elif dataloader_factory is not None:
temp_dataloader = dataloader_factory()
num_cpus = getattr(temp_dataloader, "num_workers", 1)
del temp_dataloader
else:
num_cpus = 1
if num_cpus == 0:
num_cpus = 1
# Handle device setup for primers
primers = kwargs.get("primers", None)
if hasattr(primers, "device") and primers.device is not None:
if device is not None and device != primers.device:
raise ValueError(
"Device mismatch between primers and device. "
"Use the device argument to set the device."
)
device = primers.device
if hasattr(primers, "cpu"):
primers = primers.cpu()
elif hasattr(primers, "to"):
primers = primers.to("cpu")
if primers is not None:
kwargs["primers"] = primers
# Store creation parameters for actor creation
self._dataloader = dataloader
self._dataloader_factory = dataloader_factory
self._creation_kwargs = kwargs
# Call parent constructor
super().__init__(
num_cpus=num_cpus,
num_gpus=num_gpus,
device=device,
actor_name=actor_name,
**kwargs,
)
# Actor initialization is handled by the parent RayTransform class
def _create_actor(self, **kwargs):
"""Create the remote DataLoadingPrimer actor."""
# Create the remote DataLoadingPrimer with resource specifications
RemoteDataLoadingPrimer = self._ray.remote(
num_cpus=self._num_cpus, num_gpus=self._num_gpus
)(DataLoadingPrimer)
if self._actor_name is not None:
RemoteDataLoadingPrimer = RemoteDataLoadingPrimer.options(
name=self._actor_name
)
# Create the shared actor, passing factory or dataloader as appropriate
if self._dataloader_factory is not None:
actor = RemoteDataLoadingPrimer.remote(
dataloader_factory=self._dataloader_factory, **self._creation_kwargs
)
else:
actor = RemoteDataLoadingPrimer.remote(
dataloader=self._dataloader, **self._creation_kwargs
)
return actor
@property
def dataloader(self):
"""Get dataloader property."""
raise NotImplementedError(
"dataloader is not implemented for RayDataLoadingPrimer"
)
@property
def endless_dataloader(self):
"""Get endless_dataloader property."""
raise NotImplementedError(
"endless_dataloader is not implemented for RayDataLoadingPrimer"
)
def __repr__(self):
"""String representation."""
try:
if hasattr(self, "_actor") and self._actor is not None:
return self._ray.get(self._actor.__repr__.remote())
else:
return "RayDataLoadingPrimer(actor=None)"
except Exception:
return f"RayDataLoadingPrimer(actor={getattr(self, '_actor', 'None')})"
@property
def stack_method(self):
"""Get stack_method property."""
raise NotImplementedError(
"stack_method is not implemented for RayDataLoadingPrimer"
)
@property
def repeats(self):
"""Get repeats property."""
return self._ray.get(self._actor.__getattribute__.remote("repeats"))
@property
def data_keys(self):
"""Get data_keys property."""
return self._ray.get(self._actor.__getattribute__.remote("data_keys"))
@property
def primers(self):
"""Get primers property."""
return self._ray.get(self._actor.__getattribute__.remote("primers"))
@primers.setter
def primers(self, value: TensorSpec):
"""Set primers property."""
self._ray.get(self._actor.set_attr.remote("primers", value))
# TensorDictPrimer methods
[docs] def init(self, tensordict: TensorDictBase | None):
"""Initialize."""
return self._ray.get(self._actor.init.remote(tensordict))
[docs] def reset_dataloader(self):
"""Reset the dataloader."""
return self._delegate_method_call("reset_dataloader")
@_map_input_output_device
def _load_from_dataloader(
self, reset: torch.Tensor | None = None
) -> TensorDictBase:
"""Load data from the dataloader."""
result = self._delegate_method_call("_load_from_dataloader", reset)
# Ensure proper batch dimensions: if result is scalar (ndim=0), unsqueeze to add batch dim
# This matches the behavior in the original DataLoadingPrimer._load_from_dataloader
if hasattr(result, "ndim") and not result.ndim:
result = result.unsqueeze(0)
return result
@property
def primers(self):
"""Get primers property."""
return self._delegate_property_get("primers")
@primers.setter
def primers(self, value: TensorSpec):
"""Set primers property."""
self._delegate_property_set("primers", value)
@_map_input_output_device
def _reset_func(
self, tensordict: TensorDictBase | None, tensordict_reset: TensorDictBase | None
) -> TensorDictBase | None:
"""Reset function."""
result = super()._reset_func(tensordict, tensordict_reset)
# Handle batch size expansion locally since remote actor lacks parent context
# This mimics the batch expansion logic from TensorDictPrimer._reset_func
if (
self.parent
and self.parent.batch_locked
and hasattr(result, "apply") # Check if it's a TensorDict-like object
):
# Ensure result has proper batch dimensions to match parent
expected_batch_size = self.parent.batch_size
if result.batch_size != expected_batch_size:
# Expand result to match expected batch size
result = result.expand(expected_batch_size)
return result
# Additional methods and properties are handled by the parent RayTransform class
[docs]class DataLoadingPrimer(TensorDictPrimer, metaclass=_RayServiceMetaClass):
"""A primer that loads data from a dataloader and converts it into a tensordict using ``stack_method``.
Args:
dataloader (Iterable[Dict[str, Any]]): The dataloader to load data from.
During collection, we will attempt to convert it into a tensordict using :func:`~tensordict.from_dict` or a
similar function.
It is assumed that the elements retrieved from the dataloader come in batches along the first dimension
of every tensor, unless `dataloader.batch_size=0`.
The dataloader must yield mappable data structures (e.g., dictionaries).
If a dataloader_factory is provided, it will be used to create a fresh dataloader and this argument can be
omitted.
Keyword Args:
primers (Composite | None, optional): The primers to use for each key in the dataloader. Defaults to None.
stack_method (Callable[[Any], Any] | Literal["as_nested_tensor", "as_padded_tensor"], optional): The method to
use for stacking the data. Defaults to ``maybe_dense_stack``.
repeats (int, optional): How many times the same sample needs to appear successively. This can be useful in
situations like GRPO where a single prompt is used multiple times to estimate the advantage using Monte-Carlo
samples (rather than an advantage module).
batch_size (int, torch.Size or None): the batch-size of the data delivered by the transform.
This is somewhat unrelated to the batch-size of the dataloader, in the sense that this number may or may
not match the DL's batch size.
If left empty, the batch-size is inferred from `dataloader.batch_size` if that attribute exists. If not,
an empty batch-size will be used (`torch.Size([])`).
.. note:: The batch-size of the Primer must match the batch-size of the parent environment (typically a
wrapper around :class:`~torchrl.envs.LLMEnv`).
group_repeats (bool, optional): if ``True``, the batch-size is multiplied by the number of repeats such that
all repeats are grouped in a single batch collected from the buffer. Defaults to ``False``.
dataloader_factory (Callable[[], Iterable[dict[str, Any]]], optional): A callable that returns a dataloader.
This allows for explicit resource control and avoids serialization issues.
use_ray_service (bool, optional): if ``True``, returns a :class:`RayDataLoadingPrimer` instance instead,
which creates a Ray actor for shared dataloader access across multiple environments.
Defaults to ``False``.
Attributes:
dataloader (Iterable[Any]): The dataloader to load data from.
endless_dataloader (Iterable[Any]): An endless iterator over the dataloader.
stack_method (Callable[[Any], Any]): The method to use for stacking the data.
.. seealso:: :class:`~torchrl.envs.LLMEnv` and :class:`~torchrl.envs.LLMEnv.from_dataloader`.
Examples:
Using the regular DataLoadingPrimer:
>>> dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
>>> primer = DataLoadingPrimer(dataloader=dataloader) # Regular implementation
Using the Ray-based implementation for shared dataloader access:
>>> primer = DataLoadingPrimer(dataloader=dataloader, use_ray_service=True) # Returns RayDataLoadingPrimer
>>> # Multiple environments can now share the same dataloader through the Ray actor
Example of a dataloader yielding strings:
>>> import random
>>> import string
>>> import tensordict as td
>>> import torch
>>> from tensordict import TensorDict
>>> from torchrl.data import Unbounded
>>> from torchrl.envs import DataLoadingPrimer, LLMEnv
>>> td.set_capture_non_tensor_stack(False).set()
>>> class DummyDataLoader:
... '''A dummy dataloader that generates random strings.'''
... def __init__(self, batch_size: int = 0):
... self.batch_size = batch_size
... def generate_random_string(self, length: int = 10) -. str:
... '''Generate a random string of a given length.'''
... return ''.join(random.choice(string.ascii_lowercase) for _ in range(length))
... def __iter__(self):
... return self
... def __next__(self):
... if self.batch_size == 0:
... return self.generate_random_string()
... else:
... return [self.generate_random_string() for _ in range(self.batch_size)]
>>> # Create an LLM environment with string-to-string input/output.
>>> env = LLMEnv(from_text=True)
>>> # Append a DataLoadingPrimer to the environment.
>>> env = env.append_transform(
>>> DataLoadingPrimer(
>>> dataloader=DummyDataLoader(),
>>> example_data="a string!",
>>> )
>>> )
>>> # Test the environment.
>>> print(env.rand_action(TensorDict()))
TensorDict(
fields={
action: NonTensorData(data=a string, batch_size=torch.Size([]), device=None)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
>>> print(env.rollout(3))
TensorDict(
fields={
action: NonTensorStack(
['a string', 'a string', 'a string'],
batch_size=torch.Size([3]),
device=None),
done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: NonTensorStack(
['zxwvupirska string', 'zxwvupirska stringa string...,
batch_size=torch.Size([3]),
device=None),
terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([3]),
device=None,
is_shared=False),
observation: NonTensorStack(
['zxwvupirsk', 'zxwvupirska string', 'zxwvupirska ...,
batch_size=torch.Size([3]),
device=None),
terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([3]),
device=None,
is_shared=False)
>>> # Roll out the environment with a specific initial state.
>>> init_state = env.reset(TensorDict(batch_size=[3]))
>>> print(env.rollout(3, auto_reset=False, tensordict=init_state))
TensorDict(
fields={
action: NonTensorStack(
[['a string', 'a string', 'a string'], ['a string'...,
batch_size=torch.Size([3, 3]),
device=None),
done: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
next: TensorDict(
fields={
done: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: NonTensorStack(
[[array(['nngcmflsana string', 'vrrbnhzpmga string...,
batch_size=torch.Size([3, 3]),
device=None),
terminated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([3, 3]),
device=None,
is_shared=False),
observation: NonTensorStack(
[['nngcmflsan', array(['nngcmflsana string', 'vrrb...,
batch_size=torch.Size([3, 3]),
device=None),
terminated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
batch_size=torch.Size([3, 3]),
device=None,
is_shared=False)
Example of dataloader yielding tensors:
>>> import random
>>> import string
>>>
>>> import tensordict as td
>>> import torch
>>> from tensordict import TensorDict
>>> from torchrl.data import Unbounded
>>> from torchrl.envs import DataLoadingPrimer, LLMEnv
>>>
>>> td.set_capture_non_tensor_stack(False).set()
>>>
>>>
>>> class DummyTensorDataLoader:
... '''A dummy dataloader that generates tensors of random int64 values.'''
...
... def __init__(self, batch_size: int = 0, max_length: int = 10, padding: bool = False):
... '''
... Args:
... batch_size (int, optional): The batch size of the generated tensors. Defaults to 0.
... max_length (int, optional): The maximum length of the generated tensors. Defaults to 10.
... padding (bool, optional): Whether to pad the tensors to the maximum length. Defaults to `False`.
... '''
... self.batch_size = batch_size
... self.max_length = max_length
... self.padding = padding
...
... def generate_random_tensor(self) -. torch.Tensor:
... '''Generate a tensor of random int64 values.'''
... length = random.randint(1, self.max_length)
... return torch.tensor([random.randint(0, 100) for _ in range(length)], dtype=torch.int64)
...
... def pad_tensor(self, tensor: torch.Tensor) -. torch.Tensor:
... '''Pad a tensor to the maximum length.'''
... padding_length = self.max_length - len(tensor)
... return torch.cat((torch.zeros(padding_length, dtype=torch.int64), tensor))
...
... def __iter__(self):
... return self
...
... def __next__(self):
... if self.batch_size == 0:
... tensor = self.generate_random_tensor()
... return self.pad_tensor(tensor) if self.padding else tensor
... else:
... tensors = [self.generate_random_tensor() for _ in range(self.batch_size)]
... if self.padding:
... tensors = [self.pad_tensor(tensor) for tensor in tensors]
... return torch.stack(tensors)
... else:
... return tensors
>>>
>>> # Create an LLM environment with non-string input/output and append a DataLoadingPrimer.
>>> env = LLMEnv(from_text=False)
>>> env = env.append_transform(
>>> DataLoadingPrimer(
>>> dataloader=DummyTensorDataLoader(),
>>> data_specs=[Unbounded(shape=(-1,), dtype=torch.int64)],
>>> )
>>> )
>>> print(env.rand_action(TensorDict()))
TensorDict(
fields={
action: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.int64, is_shared=False)},
batch_size=torch.Size([]),
device=None,
is_shared=False)
>>> print(env.rollout(3))
LazyStackedTensorDict(
fields={
action: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.int64, is_shared=False),
done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
next: LazyStackedTensorDict(
fields={
done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: Tensor(shape=torch.Size([3, -1]), device=cpu, dtype=torch.int64, is_shared=False),
terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([3]),
device=None,
is_shared=False,
stack_dim=0),
observation: Tensor(shape=torch.Size([3, -1]), device=cpu, dtype=torch.int64, is_shared=False),
terminated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([3]),
device=None,
is_shared=False,
stack_dim=0)
>>> # Create an LLM environment with padded tensor input/output and append a DataLoadingPrimer.
>>> env = LLMEnv(from_text=False)
>>> env = env.append_transform(
>>> DataLoadingPrimer(
>>> dataloader=DummyTensorDataLoader(padding=True),
>>> data_specs=[Unbounded(shape=(-1,), dtype=torch.int64)],
>>> stack_method="as_padded_tensor",
>>> )
>>> )
>>> print(env.rollout(3, auto_reset=False, tensordict=env.reset(TensorDict(batch_size=[3]))))
LazyStackedTensorDict(
fields={
action: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.int64, is_shared=False),
done: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
next: LazyStackedTensorDict(
fields={
done: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
observation: Tensor(shape=torch.Size([3, 3, -1]), device=cpu, dtype=torch.int64, is_shared=False),
terminated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([3, 3]),
device=None,
is_shared=False,
stack_dim=1),
observation: Tensor(shape=torch.Size([3, 3, -1]), device=cpu, dtype=torch.int64, is_shared=False),
terminated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False),
truncated: Tensor(shape=torch.Size([3, 3, 1]), device=cpu, dtype=torch.bool, is_shared=False)},
exclusive_fields={
},
batch_size=torch.Size([3, 3]),
device=None,
is_shared=False,
stack_dim=1)
"""
_RayServiceClass = RayDataLoadingPrimer
def __init__(
self,
dataloader: Iterable[dict[str, Any]] | None = None,
*,
dataloader_factory: Callable[[], Iterable[dict[str, Any]]] | None = None,
primers: Composite | None = None,
stack_method: Callable[[Any], Any]
| Literal["as_nested_tensor", "as_padded_tensor"]
| None = None,
batch_size: int | torch.Size | None = None,
repeats: int | None = None,
device: torch.device | None = None,
group_repeats: bool = False,
use_ray_service: bool = False,
):
# Validate arguments: exactly one of dataloader or dataloader_factory must be provided
if dataloader is not None and dataloader_factory is not None:
raise ValueError(
"Cannot provide both 'dataloader' and 'dataloader_factory'. Choose one."
)
if dataloader is None and dataloader_factory is None:
raise ValueError(
"Must provide exactly one of 'dataloader' or 'dataloader_factory'."
)
# Initialize dataloader from factory if provided
if dataloader_factory is not None:
self.dataloader = dataloader_factory()
self.dataloader_factory = dataloader_factory
else:
self.dataloader = dataloader
self.dataloader_factory = None
if repeats is None:
repeats = 0
self.repeats = repeats
# Determine batch-size
# We must distinguish the batch-size of the DL and the batch size of the transform.
# We may want more or less elements than the DL and the logic is slightly different so we
# allow to recompose batches on the fly. If the DL has a batch-size, every element will be
# unbound and stored in a queue. Otherwise, we get as many elements from the DL to fulfill
# the required batch-size.
#
# If the batch-size is passed, we will stack as many elements as necessary to fulfill this.
# If not, we try to get it from the dataloader. Contrary to the dataloader, we will always
# deliver the same batch-size (we create an infinite dataloader and reset when it's done),
# whereas DLs with drop_last=False may return batches of different sizes.
#
# If the batch size passed to the transform is empty (torch.Size(())) or 0, we will consider that
# the batch-size is determined on-the-fly.
#
# A batch-size of 0 in the dataloader means no batch-size.
#
# If needed, the various repeats can be grouped in a single batch through group_repeats.
#
# If auto_batch_size is on, we call auto_batch_size=True when doing TensorDict.from_dict:
# That way we get a tensordict of the right batch-size.
# If the dataloader has no batch-size, we're not sure that we can determine the batch-size
# automatically so we will consider that each element in the DL has a batch-size of 0 (ie,
# a single non-batched element is returned at a time).
if batch_size is None:
batch_size = getattr(dataloader, "batch_size", torch.Size([]))
if batch_size == 0:
batch_size = torch.Size(())
if not isinstance(batch_size, (list, tuple)):
if isinstance(batch_size, int):
batch_size_tuple = (batch_size,)
elif isinstance(batch_size, torch.Size):
batch_size_tuple = tuple(batch_size)
else:
batch_size_tuple = (batch_size,)
else:
batch_size_tuple = batch_size
batch_size = torch.Size(batch_size_tuple)
auto_batch_size = getattr(dataloader, "batch_size", 1) != 0
if len(batch_size) > 1:
raise ValueError(
f"batch_size can only be 0 or 1D, got batch_size={batch_size}."
)
# We deliver all the repeats in the same batch
if repeats and group_repeats:
if batch_size == torch.Size([]):
batch_size = torch.Size((repeats,))
else:
batch_size = torch.Size([batch_size[0] * repeats])
self._queue = deque()
self.auto_batch_size = auto_batch_size
self.batch_size = batch_size
self.endless_dataloader = self._endless_iter(self.dataloader)
if stack_method is None:
stack_method = lazy_stack
elif stack_method == "as_nested_tensor":
stack_method = as_nested_tensor
elif stack_method == "as_padded_tensor":
stack_method = as_padded_tensor
elif not callable(stack_method):
raise ValueError(f"Unknown stack_method={stack_method}")
self.stack_method = stack_method
if primers is None:
# We can get the primer from the dataloader itself
data = self._load_from_dataloader()
primers = make_composite_from_td(
data, dynamic_shape=True, unsqueeze_null_shapes=False
)
if batch_size:
primers = primers.expand(batch_size)
self._queue.insert(0, data)
self.data_keys = list(primers.keys(True, True))
else:
self.data_keys = list(primers.keys(True, True))
super().__init__(
primers=primers,
default_value=self._load_from_dataloader,
reset_key=None,
expand_specs=None,
single_default_value=True,
call_before_env_reset=True,
device=device,
)
self._reset_key = "_reset"
[docs] def reset_dataloader(self):
"""Reset the dataloader.
This is useful when the dataloader is not infinite and we want to reset it.
If a dataloader_factory was provided, it will be used to create a fresh dataloader.
Returns:
self: The transform itself.
"""
self._queue.clear()
if self.dataloader_factory is not None:
# Create a fresh dataloader from the factory
self.dataloader = self.dataloader_factory()
self.endless_dataloader = self._endless_iter(self.dataloader)
return self
@classmethod
def _endless_iter(self, obj):
while True:
yield from obj
_device: torch.device | None = None
@property
def device(self) -> torch.device | None:
if self._device is None:
primers = getattr(self, "primers", None)
if primers is not None:
device = self.primers.device
else:
parent = getattr(self, "parent", None)
if parent is not None:
device = getattr(parent, "device", None)
else:
device = None
self._device = device
return self._device
@device.setter
def device(self, device: torch.device | None):
self._device = device
def _load_from_dataloader(
self, reset: torch.Tensor | None = None
) -> TensorDictBase:
"""Loads a single element from the dataloader, or alternatively from the buffer.
If `reset` is passed, then one element per reset will be loaded.
"""
device = self.device
if reset is not None:
if not reset.any():
raise RuntimeError("reset must have at least one True value.")
if reset.ndim > 0:
loaded = [
self._load_from_dataloader().to(device) for _ in range(reset.sum())
]
return self.stack_method(loaded)
if len(self._queue) > 0:
result = self._queue.popleft()
if result.device != device:
result = result.to(device)
return result
data = next(self.endless_dataloader)
# Some heuristic here:
# if data is a map, assume its keys match the keys in spec
# TODO: one could rename the keys too
if is_tensor_collection(data):
out = data
elif isinstance(data, Mapping):
out = TensorDict.from_dict(
data,
auto_batch_size=self.auto_batch_size,
batch_dims=int(bool(self.auto_batch_size or self.batch_size)),
device=device,
)
else:
raise TypeError(
"Data loader must return a mapping that can be automatically cast to a tensordict. Check that you have "
"the appropriate collate_fn in your dataloader to do so."
)
if not out.ndim:
out = out.unsqueeze(0)
self._queue.extend(
[d for d in out.unbind(0) for _ in range(max(1, self.repeats))]
)
out = self._queue.popleft()
return out
def set_container(self, container: Transform | EnvBase) -> None:
result = super().set_container(container)
# Check batch size
parent = getattr(self, "parent", None)
if (
self.batch_size is not None
and parent is not None
and parent.batch_size != self.batch_size
):
warnings.warn(
f"The parent env has a different batch size than the {type(self).__name__} transform."
)
return result
def _update_primers_batch_size(self, parent_batch_size):
"""Update the primers to match the parent's batch size.
This method is called remotely to ensure the remote actor's primers
have the correct batch dimensions.
"""
if hasattr(self.primers, "expand"):
# Expand primers to match the parent batch size
if self.primers.shape != parent_batch_size:
self.primers = self.primers.expand(parent_batch_size)
def __repr__(self) -> str:
class_name = self.__class__.__name__
return f"{class_name}(primers={self.primers}, dataloader={self.dataloader})"
[docs] def set_attr(self, name, value):
"""Set attribute on the remote actor or locally."""
setattr(self, name, value)