Shortcuts

Source code for torchrl.collectors.distributed.ray

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import annotations

import threading
import warnings
from collections import OrderedDict
from collections.abc import Callable, Iterator, Sequence
from typing import Any

import torch
import torch.nn as nn
from tensordict import TensorDict, TensorDictBase

from torchrl._utils import as_remote, logger as torchrl_logger
from torchrl.collectors.collectors import (
    DataCollectorBase,
    DEFAULT_EXPLORATION_TYPE,
    MultiaSyncDataCollector,
    MultiSyncDataCollector,
    SyncDataCollector,
)
from torchrl.collectors.utils import _NON_NN_POLICY_WEIGHTS, split_trajectories
from torchrl.collectors.weight_update import RayWeightUpdater, WeightUpdaterBase
from torchrl.data import ReplayBuffer
from torchrl.envs.common import EnvBase
from torchrl.envs.env_creator import EnvCreator
from torchrl.weight_update.weight_sync_schemes import WeightSyncScheme

RAY_ERR = None
try:
    import ray
    from ray._private.services import get_node_ip_address

    _has_ray = True
except ImportError as err:
    _has_ray = False
    RAY_ERR = err

DEFAULT_RAY_INIT_CONFIG = {
    "address": None,
    "num_cpus": None,
    "num_gpus": None,
    "resources": None,
    "object_store_memory": None,
    "local_mode": False,
    "ignore_reinit_error": False,
    "include_dashboard": None,
    "dashboard_host": "127.0.0.1",
    "dashboard_port": None,
    "job_config": None,
    "configure_logging": True,
    "logging_level": "info",
    "logging_format": None,
    "log_to_driver": True,
    "namespace": None,
    "runtime_env": None,
}

DEFAULT_REMOTE_CLASS_CONFIG = {
    "num_cpus": 1,
    "num_gpus": 0.2 if torch.cuda.is_available() else None,
    "memory": 2 * 1024**3,
}


def print_remote_collector_info(self):
    """Prints some information about the remote collector."""
    s = (
        f"Created remote collector with in machine "
        f"{get_node_ip_address()} using gpus {ray.get_gpu_ids()}"
    )
    # torchrl_logger.warning(s)
    torchrl_logger.info(s)


[docs]class RayCollector(DataCollectorBase): """Distributed data collector with `Ray <https://docs.ray.io/>`_ backend. This Python class serves as a ray-based solution to instantiate and coordinate multiple data collectors in a distributed cluster. Like TorchRL non-distributed collectors, this collector is an iterable that yields TensorDicts until a target number of collected frames is reached, but handles distributed data collection under the hood. The class dictionary input parameter "ray_init_config" can be used to provide the kwargs to call Ray initialization method ray.init(). If "ray_init_config" is not provided, the default behavior is to autodetect an existing Ray cluster or start a new Ray instance locally if no existing cluster is found. Refer to Ray documentation for advanced initialization kwargs. Similarly, dictionary input parameter "remote_configs" can be used to specify the kwargs for ray.remote() when called to create each remote collector actor, including collector compute resources.The sum of all collector resources should be available in the cluster. Refer to Ray documentation for advanced configuration of the ray.remote() method. Default kwargs are: >>> kwargs = { ... "num_cpus": 1, ... "num_gpus": 0.2, ... "memory": 2 * 1024 ** 3, ... } The coordination between collector instances can be specified as "synchronous" or "asynchronous". In synchronous coordination, this class waits for all remote collectors to collect a rollout, concatenates all rollouts into a single TensorDict instance and finally yields the concatenated data. On the other hand, if the coordination is to be carried out asynchronously, this class provides the rollouts as they become available from individual remote collectors. Args: create_env_fn (Callable or List[Callabled]): list of Callables, each returning an instance of :class:`~torchrl.envs.EnvBase`. policy (Callable, optional): Policy to be executed in the environment. Must accept :class:`tensordict.tensordict.TensorDictBase` object as input. If ``None`` is provided, the policy used will be a :class:`~torchrl.collectors.RandomPolicy` instance with the environment ``action_spec``. Accepted policies are usually subclasses of :class:`~tensordict.nn.TensorDictModuleBase`. This is the recommended usage of the collector. Other callables are accepted too: If the policy is not a ``TensorDictModuleBase`` (e.g., a regular :class:`~torch.nn.Module` instances) it will be wrapped in a `nn.Module` first. Then, the collector will try to assess if these modules require wrapping in a :class:`~tensordict.nn.TensorDictModule` or not. - If the policy forward signature matches any of ``forward(self, tensordict)``, ``forward(self, td)`` or ``forward(self, <anything>: TensorDictBase)`` (or any typing with a single argument typed as a subclass of ``TensorDictBase``) then the policy won't be wrapped in a :class:`~tensordict.nn.TensorDictModule`. - In all other cases an attempt to wrap it will be undergone as such: ``TensorDictModule(policy, in_keys=env_obs_key, out_keys=env.action_keys)``. .. note:: If the policy needs to be passed as a policy factory (e.g., in case it mustn't be serialized / pickled directly), the ``policy_factory`` should be used instead. Keyword Args: policy_factory (Callable[[], Callable], list of Callable[[], Callable], optional): a callable (or list of callables) that returns a policy instance. This is exclusive with the `policy` argument. .. note:: `policy_factory` comes in handy whenever the policy cannot be serialized. trust_policy (bool, optional): if ``True``, a non-TensorDictModule policy will be trusted to be assumed to be compatible with the collector. This defaults to ``True`` for CudaGraphModules and ``False`` otherwise. frames_per_batch (int): A keyword-only argument representing the total number of elements in a batch. total_frames (int, Optional): lower bound of the total number of frames returned by the collector. The iterator will stop once the total number of frames equates or exceeds the total number of frames passed to the collector. Default value is -1, which mean no target total number of frames (i.e. the collector will run indefinitely). device (int, str or torch.device, optional): The generic device of the collector. The ``device`` args fills any non-specified device: if ``device`` is not ``None`` and any of ``storing_device``, ``policy_device`` or ``env_device`` is not specified, its value will be set to ``device``. Defaults to ``None`` (No default device). Lists of devices are supported. storing_device (int, str or torch.device, optional): The *remote* device on which the output :class:`~tensordict.TensorDict` will be stored. If ``device`` is passed and ``storing_device`` is ``None``, it will default to the value indicated by ``device``. For long trajectories, it may be necessary to store the data on a different device than the one where the policy and env are executed. Defaults to ``None`` (the output tensordict isn't on a specific device, leaf tensors sit on the device where they were created). Lists of devices are supported. env_device (int, str or torch.device, optional): The *remote* device on which the environment should be cast (or executed if that functionality is supported). If not specified and the env has a non-``None`` device, ``env_device`` will default to that value. If ``device`` is passed and ``env_device=None``, it will default to ``device``. If the value as such specified of ``env_device`` differs from ``policy_device`` and one of them is not ``None``, the data will be cast to ``env_device`` before being passed to the env (i.e., passing different devices to policy and env is supported). Defaults to ``None``. Lists of devices are supported. policy_device (int, str or torch.device, optional): The *remote* device on which the policy should be cast. If ``device`` is passed and ``policy_device=None``, it will default to ``device``. If the value as such specified of ``policy_device`` differs from ``env_device`` and one of them is not ``None``, the data will be cast to ``policy_device`` before being passed to the policy (i.e., passing different devices to policy and env is supported). Defaults to ``None``. Lists of devices are supported. create_env_kwargs (dict, optional): Dictionary of kwargs for ``create_env_fn``. max_frames_per_traj (int, optional): Maximum steps per trajectory. Note that a trajectory can span across multiple batches (unless ``reset_at_each_iter`` is set to ``True``, see below). Once a trajectory reaches ``n_steps``, the environment is reset. If the environment wraps multiple environments together, the number of steps is tracked for each environment independently. Negative values are allowed, in which case this argument is ignored. Defaults to ``None`` (i.e., no maximum number of steps). init_random_frames (int, optional): Number of frames for which the policy is ignored before it is called. This feature is mainly intended to be used in offline/model-based settings, where a batch of random trajectories can be used to initialize training. If provided, it will be rounded up to the closest multiple of frames_per_batch. Defaults to ``None`` (i.e. no random frames). reset_at_each_iter (bool, optional): Whether environments should be reset at the beginning of a batch collection. Defaults to ``False``. postproc (Callable, optional): A post-processing transform, such as a :class:`~torchrl.envs.Transform` or a :class:`~torchrl.data.postprocs.MultiStep` instance. Defaults to ``None``. split_trajs (bool, optional): Boolean indicating whether the resulting TensorDict should be split according to the trajectories. See :func:`~torchrl.collectors.utils.split_trajectories` for more information. Defaults to ``False``. exploration_type (ExplorationType, optional): interaction mode to be used when collecting data. Must be one of ``torchrl.envs.utils.ExplorationType.DETERMINISTIC``, ``torchrl.envs.utils.ExplorationType.RANDOM``, ``torchrl.envs.utils.ExplorationType.MODE`` or ``torchrl.envs.utils.ExplorationType.MEAN``. collector_class (Python class or constructor): a collector class to be remotely instantiated. Can be :class:`~torchrl.collectors.SyncDataCollector`, :class:`~torchrl.collectors.MultiSyncDataCollector`, :class:`~torchrl.collectors.MultiaSyncDataCollector` or a derived class of these. Defaults to :class:`~torchrl.collectors.SyncDataCollector`. collector_kwargs (dict or list, optional): a dictionary of parameters to be passed to the remote data-collector. If a list is provided, each element will correspond to an individual set of keyword arguments for the dedicated collector. num_workers_per_collector (int): the number of copies of the env constructor that is to be used on the remote nodes. Defaults to 1 (a single env per collector). On a single worker node all the sub-workers will be executing the same environment. If different environments need to be executed, they should be dispatched across worker nodes, not subnodes. ray_init_config (dict, Optional): kwargs used to call ray.init(). remote_configs (list of dicts, Optional): ray resource specs for each remote collector. A single dict can be provided as well, and will be used in all collectors. num_collectors (int, Optional): total number of collectors to be instantiated. sync (bool): if ``True``, the resulting tensordict is a stack of all the tensordicts collected on each node. If ``False`` (default), each tensordict results from a separate node in a "first-ready, first-served" fashion. update_after_each_batch (bool, optional): if ``True``, the weights will be updated after each collection. For ``sync=True``, this means that all workers will see their weights updated. For ``sync=False``, only the worker from which the data has been gathered will be updated. This is equivalent to `max_weight_update_interval=0`. Defaults to ``False``, i.e. updates have to be executed manually through :meth:`torchrl.collectors.DataCollector.update_policy_weights_` max_weight_update_interval (int, optional): the maximum number of batches that can be collected before the policy weights of a worker is updated. For sync collections, this parameter is overwritten by ``update_after_each_batch``. For async collections, it may be that one worker has not seen its parameters being updated for a certain time even if ``update_after_each_batch`` is turned on. Defaults to -1 (no forced update). replay_buffer (RayReplayBuffer, optional): if provided, the collector will not yield tensordicts but populate the buffer instead. Defaults to ``None``. .. note:: although it is not enfoced (to allow users to implement their own replay buffer class), a :class:`~torchrl.data.RayReplayBuffer` instance should be used here. weight_updater (WeightUpdaterBase or constructor, optional): (Deprecated) An instance of :class:`~torchrl.collectors.WeightUpdaterBase` or its subclass, responsible for updating the policy weights on remote inference workers managed by Ray. If not provided, a :class:`~torchrl.collectors.RayWeightUpdater` will be used by default, leveraging Ray's distributed capabilities. Consider using a constructor if the updater needs to be serialized. weight_sync_schemes (dict[str, WeightSyncScheme], optional): Dictionary mapping model identifiers to :class:`~torchrl.weight_update.weight_sync_schemes.WeightSyncScheme` instances. This is the recommended way to configure weight synchronization. If not provided, defaults to ``{"policy": RayWeightSyncScheme()}``. use_env_creator (bool, optional): if ``True``, the environment constructor functions will be wrapped in :class:`~torchrl.envs.EnvCreator`. This is useful for multiprocessed settings where shared memory needs to be managed, but Ray has its own object storage mechanism, so this is typically not needed. Defaults to ``False``. Examples: >>> from torch import nn >>> from tensordict.nn import TensorDictModule >>> from torchrl.envs.libs.gym import GymEnv >>> from torchrl.collectors import SyncDataCollector >>> from torchrl.collectors.distributed import RayCollector >>> env_maker = lambda: GymEnv("Pendulum-v1", device="cpu") >>> policy = TensorDictModule(nn.Linear(3, 1), in_keys=["observation"], out_keys=["action"]) >>> distributed_collector = RayCollector( ... create_env_fn=[env_maker], ... policy=policy, ... collector_class=SyncDataCollector, ... max_frames_per_traj=50, ... init_random_frames=-1, ... reset_at_each_iter=-False, ... collector_kwargs={ ... "device": "cpu", ... "storing_device": "cpu", ... }, ... num_collectors=1, ... total_frames=10000, ... frames_per_batch=200, ... ) >>> for i, data in enumerate(collector): ... if i == 2: ... print(data) ... break """ def __init__( self, create_env_fn: Callable | EnvBase | list[Callable] | list[EnvBase], policy: Callable[[TensorDictBase], TensorDictBase] | None = None, *, policy_factory: Callable[[], Callable] | list[Callable[[], Callable]] | None = None, trust_policy: bool | None = None, frames_per_batch: int, total_frames: int = -1, device: torch.device | list[torch.device] | None = None, storing_device: torch.device | list[torch.device] | None = None, env_device: torch.device | list[torch.device] | None = None, policy_device: torch.device | list[torch.device] | None = None, max_frames_per_traj=-1, init_random_frames=-1, reset_at_each_iter=False, postproc=None, split_trajs=False, exploration_type=DEFAULT_EXPLORATION_TYPE, collector_class: Callable[[TensorDict], TensorDict] = SyncDataCollector, collector_kwargs: dict[str, Any] | list[dict] | None = None, num_workers_per_collector: int = 1, sync: bool = False, ray_init_config: dict[str, Any] | None = None, remote_configs: dict[str, Any] | list[dict[str, Any]] | None = None, num_collectors: int | None = None, update_after_each_batch: bool = False, max_weight_update_interval: int = -1, replay_buffer: ReplayBuffer | None = None, weight_updater: WeightUpdaterBase | Callable[[], WeightUpdaterBase] | None = None, weight_sync_schemes: dict[str, WeightSyncScheme] | None = None, use_env_creator: bool = False, no_cuda_sync: bool | None = None, ): self.frames_per_batch = frames_per_batch if remote_configs is None: remote_configs = DEFAULT_REMOTE_CLASS_CONFIG if ray_init_config is None: ray_init_config = DEFAULT_RAY_INIT_CONFIG if collector_kwargs is None: collector_kwargs = {} if replay_buffer is not None: if isinstance(collector_kwargs, dict): collector_kwargs.setdefault("replay_buffer", replay_buffer) else: collector_kwargs = [ ck.setdefault("replay_buffer", replay_buffer) for ck in collector_kwargs ] # Make sure input parameters are consistent def check_consistency_with_num_collectors(param, param_name, num_collectors): """Checks that if param is a list, it has length num_collectors.""" if isinstance(param, list): if len(param) != num_collectors: raise ValueError( f"Inconsistent RayDistributedCollector parameters, {param_name} is a list of length " f"{len(param)} but the specified number of collectors is {num_collectors}." ) else: param = [param] * num_collectors return param if num_collectors: create_env_fn = check_consistency_with_num_collectors( create_env_fn, "create_env_fn", num_collectors ) collector_kwargs = check_consistency_with_num_collectors( collector_kwargs, "collector_kwargs", num_collectors ) remote_configs = check_consistency_with_num_collectors( remote_configs, "remote_config", num_collectors ) def check_list_length_consistency(*lists): """Checks that all input lists have the same length. If any non-list input is given, it is converted to a list of the same length as the others by repeating the same element multiple times. """ lengths = set() new_lists = [] for lst in lists: if isinstance(lst, list): lengths.add(len(lst)) new_lists.append(lst) else: new_lst = [lst] * max(lengths) new_lists.append(new_lst) lengths.add(len(new_lst)) if len(lengths) > 1: raise ValueError( "Inconsistent RayDistributedCollector parameters. create_env_fn, " "collector_kwargs and remote_configs are lists of different length." ) else: return new_lists out_lists = check_list_length_consistency( create_env_fn, collector_kwargs, remote_configs ) create_env_fn, collector_kwargs, remote_configs = out_lists num_collectors = len(create_env_fn) if use_env_creator: for i in range(len(create_env_fn)): if not isinstance(create_env_fn[i], (EnvBase, EnvCreator)): create_env_fn[i] = EnvCreator(create_env_fn[i]) # If ray available, try to connect to an existing Ray cluster or start one and connect to it. if not _has_ray: raise RuntimeError( "ray library not found, unable to create a DistributedCollector. " ) from RAY_ERR if not ray.is_initialized(): ray.init(**ray_init_config) if not ray.is_initialized(): raise RuntimeError("Ray could not be initialized.") # Define collector_class, monkey patch it with as_remote and print_remote_collector_info methods if collector_class == "async": collector_class = MultiaSyncDataCollector elif collector_class == "sync": collector_class = MultiSyncDataCollector elif collector_class == "single": collector_class = SyncDataCollector elif not isinstance(collector_class, type) or not issubclass( collector_class, DataCollectorBase ): raise TypeError( "The collector_class must be an instance of DataCollectorBase." ) if not hasattr(collector_class, "as_remote"): collector_class.as_remote = as_remote if not hasattr(collector_class, "print_remote_collector_info"): collector_class.print_remote_collector_info = print_remote_collector_info self.no_cuda_sync = no_cuda_sync self.replay_buffer = replay_buffer if not isinstance(policy_factory, Sequence): policy_factory = [policy_factory] * len(create_env_fn) self.policy_factory = policy_factory self.policy = policy # Store policy for weight extraction self.trust_policy = trust_policy if isinstance(policy, nn.Module): policy_weights = TensorDict.from_module(policy) policy_weights = policy_weights.data.lock_() else: policy_weights = TensorDict(lock=True) if weight_updater is None: warnings.warn(_NON_NN_POLICY_WEIGHTS) self.policy_weights = policy_weights self.collector_class = collector_class self.collected_frames = 0 self.split_trajs = split_trajs self.total_frames = total_frames self.num_collectors = num_collectors self.update_after_each_batch = update_after_each_batch self.max_weight_update_interval = max_weight_update_interval self.collector_kwargs = ( collector_kwargs if collector_kwargs is not None else [{}] ) self.device = device self.storing_device = storing_device self.env_device = env_device self.policy_device = policy_device self._batches_since_weight_update = [0 for _ in range(self.num_collectors)] self._sync = sync self._collection_thread = None self._stop_event = threading.Event() if self._sync: if frames_per_batch % self.num_collectors != 0: raise RuntimeError( f"Cannot dispatch {frames_per_batch} frames across {self.num_collectors}. " f"Consider using a number of frames per batch that is divisible by the number of workers." ) self._frames_per_batch_corrected = frames_per_batch // self.num_collectors else: self._frames_per_batch_corrected = frames_per_batch # update collector kwargs for i, collector_kwarg in enumerate(self.collector_kwargs): # Don't pass policy_factory if we have a policy - remote collectors need the policy object # to be able to apply weight updates if policy is None: collector_kwarg["policy_factory"] = policy_factory[i] collector_kwarg["max_frames_per_traj"] = max_frames_per_traj collector_kwarg["init_random_frames"] = ( init_random_frames // self.num_collectors ) if not self._sync and init_random_frames > 0: warnings.warn( "async distributed data collection with init_random_frames > 0 " "may have unforeseen consequences as we do not control that once " "non-random data is being collected all nodes are returning non-random data. " "If this is a feature that you feel should be fixed, please raise an issue on " "torchrl's repo." ) collector_kwarg["reset_at_each_iter"] = reset_at_each_iter collector_kwarg["exploration_type"] = exploration_type collector_kwarg["split_trajs"] = False collector_kwarg["frames_per_batch"] = self._frames_per_batch_corrected collector_kwarg["device"] = self.device[i] collector_kwarg["storing_device"] = self.storing_device[i] collector_kwarg["env_device"] = self.env_device[i] collector_kwarg["policy_device"] = self.policy_device[i] if "trust_policy" not in collector_kwarg: collector_kwarg["trust_policy"] = self.trust_policy if "no_cuda_sync" not in collector_kwarg and self.no_cuda_sync is not None: collector_kwarg["no_cuda_sync"] = no_cuda_sync self.postproc = postproc # Create remote instances of the collector class self._remote_collectors = [] if self.num_collectors > 0: self.add_collectors( create_env_fn, num_workers_per_collector, policy, collector_kwargs, remote_configs, ) # Set up weight synchronization - prefer new schemes over legacy updater if weight_updater is None and weight_sync_schemes is None: # Default to Ray weight sync scheme for Ray collectors from torchrl.weight_update.weight_sync_schemes import RayWeightSyncScheme weight_sync_schemes = {"policy": RayWeightSyncScheme()} if weight_sync_schemes is not None: # Use new weight synchronization system self._weight_sync_schemes = weight_sync_schemes self._weight_senders = {} # Set up weight senders now that remote collectors exist for model_id, scheme in self._weight_sync_schemes.items(): sender = scheme.create_sender() sender._model_id = model_id # Register each remote collector as a separate worker # This follows the same pattern as multiprocess collectors for worker_idx, remote_collector in enumerate(self.remote_collectors): # Create a transport for this specific collector # Pass the collector as context so the transport knows which one to talk to sender.register_worker(worker_idx, remote_collector) # Set context and register model if hasattr(sender, "set_context"): sender.set_context(self, model_id) # Store reference to source model for automatic extraction if model_id == "policy": sender._source_model = self.policy self._weight_senders[model_id] = sender self.weight_updater = None # Don't use legacy system else: # Fall back to legacy weight updater system if weight_updater is None: weight_updater = RayWeightUpdater( policy_weights=policy_weights, remote_collectors=self.remote_collectors, max_interval=self.max_weight_update_interval, ) self.weight_updater = weight_updater self._weight_sync_schemes = None self._weight_senders = {} # Print info of all remote workers (fire and forget - no need to wait) for e in self.remote_collectors: e.print_remote_collector_info.remote() def _extract_weights_if_needed(self, weights: Any, model_id: str) -> Any: """Extract weights from a model if needed. For Ray collectors, when weights is None and we have a weight sync scheme, extract fresh weights from the tracked policy model. """ scheme = ( self._weight_sync_schemes.get(model_id) if self._weight_sync_schemes else None ) if weights is None and scheme is not None: # Extract fresh weights from the source model sender = self._weight_senders.get(model_id) if ( sender and hasattr(sender, "_source_model") and sender._source_model is not None ): from torchrl.weight_update.weight_sync_schemes import WeightStrategy strategy = WeightStrategy(extract_as=scheme.strategy) return strategy.extract_weights(sender._source_model) # Fall back to base class behavior return super()._extract_weights_if_needed(weights, model_id) @property def num_workers(self): return self.num_collectors @property def device(self) -> list[torch.device]: return self._device @property def storing_device(self) -> list[torch.device]: return self._storing_device @property def env_device(self) -> list[torch.device]: return self._env_device @property def policy_device(self) -> list[torch.device]: return self._policy_device @device.setter def device(self, value): if isinstance(value, (tuple, list)): self._device = value else: self._device = [value] * self.num_collectors @storing_device.setter def storing_device(self, value): if isinstance(value, (tuple, list)): self._storing_device = value else: self._storing_device = [value] * self.num_collectors @env_device.setter def env_device(self, value): if isinstance(value, (tuple, list)): self._env_device = value else: self._env_device = [value] * self.num_collectors @policy_device.setter def policy_device(self, value): if isinstance(value, (tuple, list)): self._policy_device = value else: self._policy_device = [value] * self.num_collectors @staticmethod def _make_collector(cls, *, env_maker, policy, other_params): """Create a single collector instance.""" if policy is not None: other_params["policy"] = policy collector = cls( env_maker, total_frames=-1, **other_params, ) return collector
[docs] def add_collectors( self, create_env_fn, num_envs, policy, collector_kwargs, remote_configs, ): """Creates and adds a number of remote collectors to the set.""" for env_maker, other_params, remote_config in zip( create_env_fn, collector_kwargs, remote_configs ): cls = self.collector_class.as_remote(remote_config).remote collector = self._make_collector( cls, env_maker=[env_maker] * num_envs if num_envs > 1 or ( isinstance(self.collector_class, type) and not issubclass(self.collector_class, SyncDataCollector) ) else env_maker, policy=policy, other_params=other_params, ) self._remote_collectors.append(collector)
[docs] def local_policy(self): """Returns local collector.""" return self._local_policy
@property def remote_collectors(self): """Returns list of remote collectors.""" return self._remote_collectors
[docs] def stop_remote_collectors(self): """Stops all remote collectors.""" for _ in range(len(self._remote_collectors)): collector = self.remote_collectors.pop() # collector.__ray_terminate__.remote() # This will kill the actor but let pending tasks finish ray.kill( collector ) # This will interrupt any running tasks on the actor, causing them to fail immediately
def iterator(self): def proc(data): # When using RayReplayBuffer, sub-collectors write directly to buffer # and return None, so skip processing if data is None: return None if self.split_trajs: data = split_trajectories(data) if self.postproc is not None: data = self.postproc(data) return data if self._sync: meth = self._sync_iterator else: meth = self._async_iterator yield from (proc(data) for data in meth()) async def _asyncio_iterator(self): def proc(data): # When using RayReplayBuffer, sub-collectors write directly to buffer # and return None, so skip processing if data is None: return None if self.split_trajs: data = split_trajectories(data) if self.postproc is not None: data = self.postproc(data) return data if self._sync: for d in self._sync_iterator(): yield proc(d) else: for d in self._async_iterator(): yield proc(d) def _sync_iterator(self) -> Iterator[TensorDictBase]: """Collects one data batch per remote collector in each iteration.""" while ( self.collected_frames < self.total_frames and not self._stop_event.is_set() ): if self.update_after_each_batch or self.max_weight_update_interval > -1: torchrl_logger.info("Updating weights on all workers") self.update_policy_weights_() # Ask for batches to all remote workers. pending_tasks = [e.next.remote() for e in self.remote_collectors] # Wait for all rollouts samples_ready = [] while len(samples_ready) < self.num_collectors: samples_ready, samples_not_ready = ray.wait( pending_tasks, num_returns=len(pending_tasks) ) # Retrieve and concatenate Tensordicts out_td = [] for r in pending_tasks: rollouts = ray.get(r) ray.internal.free( r ) # should not be necessary, deleted automatically when ref count is down to 0 out_td.append(rollouts) # Handle case where replay_buffer is used and rollouts are None if out_td[0] is None: # Sub-collectors are writing directly to RayReplayBuffer # Track frames and yield None to signal completion self.collected_frames += self.frames_per_batch yield None else: # Normal case: concatenate and yield rollouts if len(rollouts.batch_size): out_td = torch.stack(out_td) else: out_td = torch.cat(out_td) self.collected_frames += out_td.numel() yield out_td # Only auto-shutdown if not running in a background thread. # When using replay buffer, users should explicitly manage shutdown order. if self._collection_thread is None: self.shutdown(shutdown_ray=False) def _run_collection_loop(self): """Runs the collection loop in a background thread.""" try: for _ in self.iterator(): if self._stop_event.is_set(): break # When RayReplayBuffer is configured, sub-collectors write directly # to the buffer and data will be None. Otherwise, data contains rollouts. except Exception as e: torchrl_logger.error(f"Error in collection thread: {e}") raise
[docs] def start(self): """Starts the RayCollector in a background thread.""" if self.replay_buffer is None: raise RuntimeError( "Replay buffer must be defined for background execution." ) if self._collection_thread is None or not self._collection_thread.is_alive(): self._stop_event.clear() self._collection_thread = threading.Thread( target=self._run_collection_loop, daemon=True ) self._collection_thread.start()
[docs] async def async_shutdown(self, shutdown_ray: bool = False): """Finishes processes started by the collector during async execution. Args: shutdown_ray (bool): If True, also shutdown the Ray cluster. Defaults to False. Note: Setting this to True will kill all Ray actors in the cluster, including any replay buffers or other services. Only set to True if you're sure you want to shut down the entire Ray cluster. """ self._stop_event.set() if self._collection_thread is not None and self._collection_thread.is_alive(): self._collection_thread.join(timeout=5.0) self.stop_remote_collectors() if shutdown_ray: ray.shutdown()
def _async_iterator(self) -> Iterator[TensorDictBase]: """Collects a data batch from a single remote collector in each iteration.""" pending_tasks = {} for index, collector in enumerate(self.remote_collectors): future = collector.next.remote() pending_tasks[future] = index while ( self.collected_frames < self.total_frames and not self._stop_event.is_set() ): if not len(list(pending_tasks.keys())) == len(self.remote_collectors): raise RuntimeError("Missing pending tasks, something went wrong") # Wait for first worker to finish wait_results = ray.wait(list(pending_tasks.keys())) future = wait_results[0][0] collector_index = pending_tasks.pop(future) collector = self.remote_collectors[collector_index] # Retrieve single rollouts out_td = ray.get(future) ray.internal.free( [future] ) # should not be necessary, deleted automatically when ref count is down to 0 # Track collected frames - use frames_per_batch since out_td might be None # when using RayReplayBuffer (sub-collectors write directly to buffer) self.collected_frames += self.frames_per_batch yield out_td if self.update_after_each_batch or self.max_weight_update_interval > -1: torchrl_logger.info(f"Updating weights on worker {collector_index}") self.update_policy_weights_(worker_ids=collector_index + 1) # Schedule a new collection task future = collector.next.remote() pending_tasks[future] = collector_index # Wait for the in-process collections tasks to finish. refs = list(pending_tasks.keys()) ray.wait(refs, num_returns=len(refs)) # Cancel the in-process collections tasks # for ref in refs: # ray.cancel( # object_ref=ref, # force=False, # ) if self._collection_thread is None: self.shutdown()
[docs] def set_seed(self, seed: int, static_seed: bool = False) -> list[int]: """Calls parent method for each remote collector iteratively and returns final seed.""" for collector in self.remote_collectors: seed = ray.get(object_refs=collector.set_seed.remote(seed, static_seed)) return seed
[docs] def state_dict(self) -> list[OrderedDict]: """Calls parent method for each remote collector and returns a list of results.""" futures = [ collector.state_dict.remote() for collector in self.remote_collectors ] results = ray.get(object_refs=futures) return results
[docs] def load_state_dict(self, state_dict: OrderedDict | list[OrderedDict]) -> None: """Calls parent method for each remote collector.""" if isinstance(state_dict, OrderedDict): state_dicts = [state_dict] if len(state_dict) == 1: state_dicts = state_dict * len(self.remote_collectors) for collector, state_dict in zip(self.remote_collectors, state_dicts): collector.load_state_dict.remote(state_dict)
[docs] def shutdown( self, timeout: float | None = None, shutdown_ray: bool = False ) -> None: """Finishes processes started by the collector. Args: timeout (float, optional): Timeout for stopping the collection thread. shutdown_ray (bool): If True, also shutdown the Ray cluster. Defaults to False. Note: Setting this to True will kill all Ray actors in the cluster, including any replay buffers or other services. Only set to True if you're sure you want to shut down the entire Ray cluster. """ self._stop_event.set() if self._collection_thread is not None and self._collection_thread.is_alive(): self._collection_thread.join( timeout=timeout if timeout is not None else 5.0 ) self.stop_remote_collectors() if shutdown_ray: ray.shutdown()
def __repr__(self) -> str: string = f"{self.__class__.__name__}()" return string

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources