Shortcuts

Source code for torchrl.modules.distributions.discrete

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations

from enum import Enum
from functools import wraps
from typing import Sequence

import torch
import torch.distributions as D
import torch.nn.functional as F
from tensordict.utils import expand_as_right

from torch.distributions.utils import lazy_property, logits_to_probs, probs_to_logits

__all__ = [
    "OneHotCategorical",
    "MaskedCategorical",
    "Ordinal",
    "OneHotOrdinal",
    "LLMMaskedCategorical",
]


def _treat_categorical_params(
    params: torch.Tensor | None = None,
) -> torch.Tensor | None:
    if params is None:
        return None
    if params.shape[-1] == 1:
        params = params[..., 0]
    return params


def rand_one_hot(values: torch.Tensor, do_softmax: bool = True) -> torch.Tensor:
    if do_softmax:
        values = values.softmax(-1)
    out = values.cumsum(-1) > torch.rand_like(values[..., :1])
    out = (out.cumsum(-1) == 1).to(torch.long)
    return out


class _one_hot_wrapper:
    def __init__(self, parent_dist):
        self.parent_dist = parent_dist

    def __call__(self, func):
        @wraps(func)
        def wrapped(_self, *args, **kwargs):
            out = getattr(self.parent_dist, func.__name__)(_self, *args, **kwargs)
            n = _self.num_samples
            return torch.nn.functional.one_hot(out, n)

        return wrapped


class ReparamGradientStrategy(Enum):
    PassThrough = 1
    RelaxedOneHot = 2


[docs]class OneHotCategorical(D.Categorical): """One-hot categorical distribution. This class behaves exactly as torch.distributions.Categorical except that it reads and produces one-hot encodings of the discrete tensors. Args: logits (torch.Tensor): event log probabilities (unnormalized) probs (torch.Tensor): event probabilities grad_method (ReparamGradientStrategy, optional): strategy to gather reparameterized samples. ``ReparamGradientStrategy.PassThrough`` will compute the sample gradients by using the softmax valued log-probability as a proxy to the sample gradients. ``ReparamGradientStrategy.RelaxedOneHot`` will use :class:`torch.distributions.RelaxedOneHot` to sample from the distribution. Examples: >>> torch.manual_seed(0) >>> logits = torch.randn(4) >>> dist = OneHotCategorical(logits=logits) >>> print(dist.rsample((3,))) tensor([[1., 0., 0., 0.], [0., 0., 0., 1.], [1., 0., 0., 0.]]) """ num_params: int = 1 # This is to make the compiler happy, see https://github.com/pytorch/pytorch/issues/140266 @lazy_property def logits(self): return probs_to_logits(self.probs) @lazy_property def probs(self): return logits_to_probs(self.logits) def __init__( self, logits: torch.Tensor | None = None, probs: torch.Tensor | None = None, grad_method: ReparamGradientStrategy = ReparamGradientStrategy.PassThrough, **kwargs, ) -> None: logits = _treat_categorical_params(logits) probs = _treat_categorical_params(probs) self.grad_method = grad_method super().__init__(probs=probs, logits=logits, **kwargs) # Get num_samples from logits or probs shape if logits is not None: self.num_samples = logits.shape[-1] else: self.num_samples = probs.shape[-1]
[docs] def log_prob(self, value: torch.Tensor) -> torch.Tensor: return super().log_prob(value.argmax(dim=-1))
@property def mode(self) -> torch.Tensor: if hasattr(self, "logits"): return (self.logits == self.logits.max(-1, True)[0]).to(torch.long) else: return (self.probs == self.probs.max(-1, True)[0]).to(torch.long) @property def deterministic_sample(self): return self.mode
[docs] def entropy(self): min_real = torch.finfo(self.logits.dtype).min logits = torch.clamp(self.logits, min=min_real) p_log_p = logits * self.probs return -p_log_p.sum(-1)
[docs] @_one_hot_wrapper(D.Categorical) def sample(self, sample_shape: torch.Size | Sequence | None = None) -> torch.Tensor: ...
[docs] def rsample(self, sample_shape: torch.Size | Sequence = None) -> torch.Tensor: if sample_shape is None: sample_shape = torch.Size([]) if hasattr(self, "logits") and self.logits is not None: logits = self.logits probs = None else: logits = None probs = self.probs if self.grad_method == ReparamGradientStrategy.RelaxedOneHot: d = D.relaxed_categorical.RelaxedOneHotCategorical( 1.0, probs=probs, logits=logits ) out = d.rsample(sample_shape) out.data.copy_((out == out.max(-1)[0].unsqueeze(-1)).to(out.dtype)) return out elif self.grad_method == ReparamGradientStrategy.PassThrough: if logits is not None: probs = self.probs else: probs = torch.softmax(self.logits, dim=-1) out = self.sample(sample_shape) out = out + probs - probs.detach() return out else: raise ValueError( f"Unknown reparameterization strategy {self.reparam_strategy}." )
[docs]class MaskedCategorical(D.Categorical): """MaskedCategorical distribution. Reference: https://www.tensorflow.org/agents/api_docs/python/tf_agents/distributions/masked/MaskedCategorical Args: logits (torch.Tensor): event log probabilities (unnormalized) probs (torch.Tensor): event probabilities. If provided, the probabilities corresponding to masked items will be zeroed and the probability re-normalized along its last dimension. Keyword Args: mask (torch.Tensor): A boolean mask of the same shape as ``logits``/``probs`` where ``False`` entries are the ones to be masked. Alternatively, if ``sparse_mask`` is True, it represents the list of valid indices in the distribution. Exclusive with ``indices``. indices (torch.Tensor): A dense index tensor representing which actions must be taken into account. Exclusive with ``mask``. neg_inf (:obj:`float`, optional): The log-probability value allocated to invalid (out-of-mask) indices. Defaults to -inf. padding_value: The padding value in the mask tensor. When sparse_mask == True, the padding_value will be ignored. use_cross_entropy (bool, optional): For faster computation of the log-probability, the cross_entropy loss functional can be used. Defaults to ``True``. padding_side (str, optional): The side of the padding. Defaults to ``"left"``. Examples: >>> torch.manual_seed(0) >>> logits = torch.randn(4) / 100 # almost equal probabilities >>> mask = torch.tensor([True, False, True, True]) >>> dist = MaskedCategorical(logits=logits, mask=mask) >>> sample = dist.sample((10,)) >>> print(sample) # no `1` in the sample tensor([2, 3, 0, 2, 2, 0, 2, 0, 2, 2]) >>> print(dist.log_prob(sample)) tensor([-1.1203, -1.0928, -1.0831, -1.1203, -1.1203, -1.0831, -1.1203, -1.0831, -1.1203, -1.1203]) >>> print(dist.log_prob(torch.ones_like(sample))) tensor([-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf]) >>> # with probabilities >>> prob = torch.ones(10) >>> prob = prob / prob.sum() >>> mask = torch.tensor([False] + 9 * [True]) # first outcome is masked >>> dist = MaskedCategorical(probs=prob, mask=mask) >>> print(dist.log_prob(torch.arange(10))) tensor([ -inf, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972]) """ @lazy_property def logits(self): return probs_to_logits(self.probs) @lazy_property def probs(self): return logits_to_probs(self.logits) def __init__( self, logits: torch.Tensor | None = None, probs: torch.Tensor | None = None, *, mask: torch.Tensor | None = None, indices: torch.Tensor | None = None, neg_inf: float = float("-inf"), padding_value: int | None = None, use_cross_entropy: bool = True, padding_side: str = "left", ) -> None: if not ((mask is None) ^ (indices is None)): raise ValueError( f"A ``mask`` or some ``indices`` must be provided for {type(self)}, but not both." ) if mask is None: mask = indices sparse_mask = True else: sparse_mask = False if probs is not None: if logits is not None: raise ValueError( "Either `probs` or `logits` must be specified, but not both." ) # unnormalized logits probs = probs.clone() if mask.dtype == torch.bool: probs[~mask] = 0 else: probs = torch.scatter( torch.zeros_like(probs), -1, indices, probs.gather(-1, indices) ) probs = probs / probs.sum(-1, keepdim=True) logits = probs.log() num_samples = logits.shape[-1] self.use_cross_entropy = use_cross_entropy logits = self._mask_logits( logits, mask, neg_inf=neg_inf, sparse_mask=sparse_mask, padding_value=padding_value, ) self.neg_inf = neg_inf self._mask = mask self._sparse_mask = sparse_mask self._padding_value = padding_value self._padding_side = padding_side super().__init__(logits=logits) self.num_samples = num_samples @property def padding_value(self): """Padding value of the distribution mask. If the padding value is not set, it will be inferred from the logits. """ return self._padding_value if self._padding_value is not None else 0 @property def padding_side(self): return self._padding_side @property def mask(self): if self._sparse_mask: raise ValueError("MaskedCategorical.mask does not support sparse masks") return self._mask
[docs] def entropy(self): """Compute the entropy of the distribution. For masked distributions, we only consider the entropy over the valid (unmasked) outcomes. Invalid outcomes have zero probability and don't contribute to entropy. """ min_real = torch.finfo(self.logits.dtype).min # Clamp logits to avoid numerical issues logits = self.logits if self._mask.dtype is torch.bool: mask = expand_as_right(self._mask, logits) mask = (~mask) | (~logits.isfinite()) logits = torch.masked_fill(logits, mask, min_real) else: # logits are already masked pass logits = logits - logits.logsumexp(-1, keepdim=True) # Get probabilities and mask them probs = logits.exp() # Compute entropy only for valid outcomes p_log_p = logits * probs return -p_log_p.sum(-1)
[docs] def sample( self, sample_shape: torch.Size | Sequence[int] | None = None ) -> torch.Tensor: if sample_shape is None: sample_shape = torch.Size() else: sample_shape = torch.Size(sample_shape) ret = super().sample(sample_shape) if not self._sparse_mask: return ret size = ret.size() outer_dim = sample_shape.numel() inner_dim = self._mask.shape[:-1].numel() idx_3d = self._mask.expand(outer_dim, inner_dim, -1) ret = idx_3d.gather(dim=-1, index=ret.view(outer_dim, inner_dim, 1)) return ret.reshape(size)
[docs] def log_prob(self, value: torch.Tensor) -> torch.Tensor: if not self._sparse_mask: if self.use_cross_entropy: logits = self.logits if logits.ndim > 2: # Bring channels in 2nd dim logits = logits.transpose(-1, 1) original_value_shape = None if logits.ndim == 1 and value.ndim >= 1: if value.ndim >= 2: original_value_shape = value.shape value = value.flatten() logits = logits.unsqueeze(0).expand(value.shape + logits.shape) result = -torch.nn.functional.cross_entropy(logits, value, reduce=False) if original_value_shape is not None: result = result.unflatten(0, original_value_shape) else: result = super().log_prob(value) result = torch.where(torch.isfinite(result), result, self.neg_inf) return result idx_3d = self._mask.view(1, -1, self._num_events) val_3d = value.view(-1, idx_3d.size(1), 1) mask = idx_3d == val_3d idx = mask.int().argmax(dim=-1, keepdim=True) idx = idx.view_as(value) if self.use_cross_entropy: logits = self.logits if logits.ndim > 2: # Bring channels in 2nd dim logits = logits.transpose(-1, 1) # possible shapes: # Don't work with cross_entropy (missing batch dimension) # logits.shape = (C,) and idx.shape = (B,) # logits.shape = (C,) and idx.shape = (B0, B1, ...) => requires flattening of idx, only one batch dimension # work with cross_entropy: # logits.shape = (B, C) and idx.shape = (B,) # logits.shape = (B, C, d1, d2, ...) and idx.shape = (B, d1, d2, ...) original_idx_shape = None if logits.ndim == 1 and idx.ndim >= 1: if idx.ndim >= 2: original_idx_shape = idx.shape idx = idx.flatten() logits = logits.unsqueeze(0).expand(idx.shape + logits.shape) ret = -torch.nn.functional.cross_entropy(logits, idx, reduce=False) if original_idx_shape is not None: ret = ret.unflatten(0, original_idx_shape) else: ret = super().log_prob(idx) # Fill masked values with neg_inf. ret = ret.view_as(val_3d) ret = ret.masked_fill( torch.logical_not(mask.any(dim=-1, keepdim=True)), self.neg_inf ) return ret.view_as(value)
@staticmethod def _mask_logits( logits: torch.Tensor, mask: torch.Tensor | None = None, neg_inf: float = float("-inf"), sparse_mask: bool = False, padding_value: int | None = None, ) -> torch.Tensor: if mask is None: return logits if not sparse_mask: return logits.masked_fill(~mask, neg_inf) if padding_value is not None: padding_mask = mask == padding_value if padding_value != 0: # Avoid invalid indices in mask. mask = mask.masked_fill(padding_mask, 0) logits = logits.gather(dim=-1, index=mask) if padding_value is not None: logits.masked_fill_(padding_mask, neg_inf) return logits @property def deterministic_sample(self): return self.mode
[docs]class MaskedOneHotCategorical(MaskedCategorical): """MaskedCategorical distribution. Reference: https://www.tensorflow.org/agents/api_docs/python/tf_agents/distributions/masked/MaskedCategorical Args: logits (torch.Tensor): event log probabilities (unnormalized) probs (torch.Tensor): event probabilities. If provided, the probabilities corresponding to masked items will be zeroed and the probability re-normalized along its last dimension. Keyword Args: mask (torch.Tensor): A boolean mask of the same shape as ``logits``/``probs`` where ``False`` entries are the ones to be masked. Alternatively, if ``sparse_mask`` is True, it represents the list of valid indices in the distribution. Exclusive with ``indices``. indices (torch.Tensor): A dense index tensor representing which actions must be taken into account. Exclusive with ``mask``. neg_inf (:obj:`float`, optional): The log-probability value allocated to invalid (out-of-mask) indices. Defaults to -inf. padding_value: The padding value in then mask tensor when sparse_mask == True, the padding_value will be ignored. grad_method (ReparamGradientStrategy, optional): strategy to gather reparameterized samples. ``ReparamGradientStrategy.PassThrough`` will compute the sample gradients by using the softmax valued log-probability as a proxy to the samples gradients. ``ReparamGradientStrategy.RelaxedOneHot`` will use :class:`torch.distributions.RelaxedOneHot` to sample from the distribution. Examples: >>> torch.manual_seed(0) >>> logits = torch.randn(4) / 100 # almost equal probabilities >>> mask = torch.tensor([True, False, True, True]) >>> dist = MaskedOneHotCategorical(logits=logits, mask=mask) >>> sample = dist.sample((10,)) >>> print(sample) # no `1` in the sample tensor([[0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]) >>> print(dist.log_prob(sample)) tensor([-1.1203, -1.0928, -1.0831, -1.1203, -1.1203, -1.0831, -1.1203, -1.0831, -1.1203, -1.1203]) >>> sample_non_valid = torch.zeros_like(sample) >>> sample_non_valid[..., 1] = 1 >>> print(dist.log_prob(sample_non_valid)) tensor([-inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf, -inf]) >>> # with probabilities >>> prob = torch.ones(10) >>> prob = prob / prob.sum() >>> mask = torch.tensor([False] + 9 * [True]) # first outcome is masked >>> dist = MaskedOneHotCategorical(probs=prob, mask=mask) >>> s = torch.arange(10) >>> s = torch.nn.functional.one_hot(s, 10) >>> print(dist.log_prob(s)) tensor([ -inf, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972, -2.1972]) """ @lazy_property def logits(self): return probs_to_logits(self.probs) @lazy_property def probs(self): return logits_to_probs(self.logits) def __init__( self, logits: torch.Tensor | None = None, probs: torch.Tensor | None = None, mask: torch.Tensor = None, indices: torch.Tensor = None, neg_inf: float = float("-inf"), padding_value: int | None = None, grad_method: ReparamGradientStrategy = ReparamGradientStrategy.PassThrough, ) -> None: self.grad_method = grad_method super().__init__( logits=logits, probs=probs, mask=mask, indices=indices, neg_inf=neg_inf, padding_value=padding_value, )
[docs] @_one_hot_wrapper(MaskedCategorical) def sample( self, sample_shape: torch.Size | Sequence[int] | None = None ) -> torch.Tensor: ...
@property def deterministic_sample(self): return self.mode @property def mode(self) -> torch.Tensor: if hasattr(self, "logits"): return (self.logits == self.logits.max(-1, True)[0]).to(torch.long) else: return (self.probs == self.probs.max(-1, True)[0]).to(torch.long)
[docs] def log_prob(self, value: torch.Tensor) -> torch.Tensor: return super().log_prob(value.argmax(dim=-1))
[docs] def rsample(self, sample_shape: torch.Size | Sequence = None) -> torch.Tensor: if sample_shape is None: sample_shape = torch.Size([]) if hasattr(self, "logits") and self.logits is not None: logits = self.logits probs = None else: logits = None probs = self.probs if self.grad_method == ReparamGradientStrategy.RelaxedOneHot: if self._sparse_mask: if probs is not None: probs_extended = torch.full( (*probs.shape[:-1], self.num_samples), 0, device=probs.device, dtype=probs.dtype, ) probs_extended = torch.scatter( probs_extended, -1, self._mask, probs ) logits_extended = None else: probs_extended = torch.full( (*logits.shape[:-1], self.num_samples), self.neg_inf, device=logits.device, dtype=logits.dtype, ) logits_extended = torch.scatter( probs_extended, -1, self._mask, logits ) probs_extended = None else: probs_extended = probs logits_extended = logits d = D.relaxed_categorical.RelaxedOneHotCategorical( 1.0, probs=probs_extended, logits=logits_extended ) out = d.rsample(sample_shape) out.data.copy_((out == out.max(-1)[0].unsqueeze(-1)).to(out.dtype)) return out elif self.grad_method == ReparamGradientStrategy.PassThrough: if logits is not None: probs = self.probs else: probs = torch.softmax(self.logits, dim=-1) if self._sparse_mask: probs_extended = torch.full( (*probs.shape[:-1], self.num_samples), 0, device=probs.device, dtype=probs.dtype, ) probs_extended = torch.scatter(probs_extended, -1, self._mask, probs) else: probs_extended = probs out = self.sample(sample_shape) out = out + probs_extended - probs_extended.detach() return out else: raise ValueError( f"Unknown reparameterization strategy {self.reparam_strategy}." )
[docs]class Ordinal(D.Categorical): """A discrete distribution for learning to sample from finite ordered sets. It is defined in contrast with the `Categorical` distribution, which does not impose any notion of proximity or ordering over its support's atoms. The `Ordinal` distribution explicitly encodes those concepts, which is useful for learning discrete sampling from continuous sets. See §5 of `Tang & Agrawal, 2020<https://arxiv.org/pdf/1901.10500.pdf>`_ for details. .. note:: This class is mostly useful when you want to learn a distribution over a finite set which is obtained by discretising a continuous set. Args: scores (torch.Tensor): a tensor of shape [..., N] where N is the size of the set which supports the distributions. Typically, the output of a neural network parametrising the distribution. Examples: >>> num_atoms, num_samples = 5, 20 >>> mean = (num_atoms - 1) / 2 # Target mean for samples, centered around the middle atom >>> torch.manual_seed(42) >>> logits = torch.ones((num_atoms), requires_grad=True) >>> optimizer = torch.optim.Adam([logits], lr=0.1) >>> >>> # Perform optimisation loop to minimise deviation from `mean` >>> for _ in range(20): >>> sampler = Ordinal(scores=logits) >>> samples = sampler.sample((num_samples,)) >>> # Define loss to encourage samples around the mean by penalising deviation from mean >>> loss = torch.mean((samples - mean) ** 2 * sampler.log_prob(samples)) >>> loss.backward() >>> optimizer.step() >>> optimizer.zero_grad() >>> >>> sampler.probs tensor([0.0308, 0.1586, 0.4727, 0.2260, 0.1120], ...) >>> # Print histogram to observe sample distribution frequency across 5 bins (0, 1, 2, 3, and 4) >>> torch.histogram(sampler.sample((1000,)).reshape(-1).float(), bins=num_atoms) torch.return_types.histogram( hist=tensor([ 24., 158., 478., 228., 112.]), bin_edges=tensor([0.0000, 0.8000, 1.6000, 2.4000, 3.2000, 4.0000])) """ def __init__(self, scores: torch.Tensor): logits = _generate_ordinal_logits(scores) super().__init__(logits=logits)
[docs]class OneHotOrdinal(OneHotCategorical): """The one-hot version of the :class:`~tensordict.nn.distributions.Ordinal` distribution. Args: scores (torch.Tensor): a tensor of shape [..., N] where N is the size of the set which supports the distributions. Typically, the output of a neural network parametrising the distribution. """ def __init__(self, scores: torch.Tensor): logits = _generate_ordinal_logits(scores) super().__init__(logits=logits)
def _generate_ordinal_logits(scores: torch.Tensor) -> torch.Tensor: """Implements Eq. 4 of `Tang & Agrawal, 2020<https://arxiv.org/pdf/1901.10500.pdf>`__.""" # Assigns Bernoulli-like probabilities for each class in the set log_probs = F.logsigmoid(scores) complementary_log_probs = F.logsigmoid(-scores) # Total log-probability for being "larger than k" larger_than_log_probs = log_probs.cumsum(dim=-1) # Total log-probability for being "smaller than k" smaller_than_log_probs = ( complementary_log_probs.flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1]) - complementary_log_probs ) return larger_than_log_probs + smaller_than_log_probs
[docs]class LLMMaskedCategorical(D.Distribution): """LLM-optimized masked categorical distribution. This class provides a more memory-efficient approach for LLM training by: 1. Using ignore_index=-100 for log_prob computation (no masking overhead) 2. Using traditional masking for sampling operations This is particularly beneficial for large vocabulary sizes where masking all logits can be memory-intensive. Args: logits (torch.Tensor): Event log probabilities (unnormalized), shape [B, T, C]. - *B*: batch size (optional) - T: sequence length - C: vocabulary size (number of classes) mask (torch.Tensor): Boolean mask indicating valid positions/tokens. - If shape [*B, T]: position-level masking. True means the position is valid (all tokens allowed). - If shape [*B, T, C]: token-level masking. True means the token is valid at that position. .. warning:: Token-level masking is considerably more memory-intensive than position-level masking. Only use this if you need to mask tokens. ignore_index (int, optional): Index to ignore in log_prob computation. Defaults to -100. Input shapes: - logits: [*B, T, C] (required) - mask: [*B, T] (position-level) or [*B, T, C] (token-level) - tokens (for log_prob): [*B, T] (token indices, with ignore_index for masked positions) Use cases: 1. **Position-level masking** >>> logits = torch.randn(2, 10, 50000) # [B=2, T=10, C=50000] >>> mask = torch.ones(2, 10, dtype=torch.bool) # [B, T] >>> mask[0, :5] = False # mask first 5 positions of first sequence >>> dist = LLMMaskedCategorical(logits=logits, mask=mask) >>> tokens = torch.randint(0, 50000, (2, 10)) # [B, T] >>> tokens[0, :5] = -100 # set masked positions to ignore_index >>> log_probs = dist.log_prob(tokens) >>> samples = dist.sample() # [B, T] 2. **Token-level masking** >>> logits = torch.randn(2, 10, 50000) >>> mask = torch.ones(2, 10, 50000, dtype=torch.bool) # [B, T, C] >>> mask[0, :5, :1000] = False # mask first 1000 tokens for first 5 positions >>> dist = LLMMaskedCategorical(logits=logits, mask=mask) >>> tokens = torch.randint(0, 50000, (2, 10)) >>> # Optionally, set tokens at fully-masked positions to ignore_index >>> log_probs = dist.log_prob(tokens) >>> samples = dist.sample() # [B, T] Notes: - For log_prob, tokens must be of shape [B, T] and contain valid token indices (0 <= token < C), or ignore_index for masked/ignored positions. - For token-level masking, if a token is masked at a given position, log_prob will return -inf for that entry. - For position-level masking, if a position is masked (ignore_index), log_prob will return 0.0 for that entry (correct for cross-entropy loss). - Sampling always respects the mask (masked tokens/positions are never sampled). All documented use cases are covered by tests in test_distributions.py. """ def __init__( self, logits: torch.Tensor, mask: torch.Tensor, ignore_index: int = -100, ) -> None: # Validate shapes if logits.shape[:-1] != mask.shape and logits.shape != mask.shape: raise ValueError( f"Mask shape {mask.shape} must be either logits batch shape {logits.shape[:-1]} " f"(for position-level masking) or logits shape {logits.shape} " f"(for token-level masking)" ) self._original_logits = logits self._mask = mask self.ignore_index = ignore_index self._position_level_masking = mask.shape == logits.shape[:-1] # Create masked logits for sampling (only when needed) self._masked_logits = None self._masked_dist = None # Set up distribution properties batch_shape = logits.shape[:-1] event_shape = logits.shape[-1:] super().__init__(batch_shape=batch_shape, event_shape=event_shape) @property def _sampling_logits(self): """Get masked logits for sampling operations.""" if self._masked_logits is None: # Only create masked logits when needed for sampling large_neg = torch.finfo(self._original_logits.dtype).min if self._position_level_masking: # Position-level masking: expand mask to match logits shape mask_expanded = expand_as_right(self._mask, self._original_logits) self._masked_logits = self._original_logits.masked_fill( ~mask_expanded, large_neg ) else: # Token-level masking: direct masking self._masked_logits = self._original_logits.masked_fill( ~self._mask, large_neg ) return self._masked_logits @property def _sampling_dist(self): """Get masked distribution for sampling operations.""" if self._masked_dist is None: self._masked_dist = D.Categorical(logits=self._sampling_logits) return self._masked_dist
[docs] def log_prob(self, value: torch.Tensor) -> torch.Tensor: """Compute log probabilities using ignore_index approach. This is memory-efficient as it doesn't require masking the logits. The value tensor should use ignore_index for masked positions. """ if not self._position_level_masking: logits = self.masked_logits else: # Use cross_entropy with ignore_index for efficiency # For position-level masking, keep the default behavior (0.0 for ignore_index) # This is correct for cross-entropy loss computation # For token-level masking, we need to check if specific tokens are masked logits = self._original_logits value = value.masked_fill(~self._mask, self.ignore_index) if value.ndim > 1: # Reshape for cross_entropy: (batch, seq_len, vocab) -> (batch*seq_len, vocab) logits_flat = logits.reshape(-1, logits.size(-1)) value_flat = value.reshape(-1) # Compute cross_entropy with ignore_index log_probs_flat = -F.cross_entropy( logits_flat, value_flat, reduce=False, ignore_index=self.ignore_index ) # Reshape back log_probs = log_probs_flat.reshape_as(value) else: log_probs = -F.cross_entropy( logits, value, reduce=False, ignore_index=self.ignore_index, ) return log_probs
[docs] def sample( self, sample_shape: torch.Size | Sequence[int] | None = None ) -> torch.Tensor: """Sample from the distribution using masked logits.""" if sample_shape is None: sample_shape = torch.Size() return self._sampling_dist.sample(sample_shape)
[docs] def rsample( self, sample_shape: torch.Size | Sequence[int] | None = None ) -> torch.Tensor: """Reparameterized sampling using masked logits.""" # This would need to be implemented based on the specific reparameterization strategy # For now, fall back to regular sampling return self.sample(sample_shape)
@property def mode(self) -> torch.Tensor: """Get the mode using masked logits.""" masked_logits = self._sampling_logits return masked_logits.argmax(dim=-1)
[docs] def entropy(self) -> torch.Tensor: """Compute entropy using masked logits.""" return self._sampling_dist.entropy()
[docs] def clear_cache(self): """Clear cached masked tensors to free memory.""" self._masked_logits = None self._masked_dist = None
@property def mask(self) -> torch.Tensor: """Get the mask.""" return self._mask @property def logits(self) -> torch.Tensor: """Get the original logits.""" return self._original_logits @property def probs(self) -> torch.Tensor: """Get probabilities from original logits.""" return torch.softmax(self._original_logits, dim=-1) @property def masked_logits(self) -> torch.Tensor: """Get the masked logits for sampling operations.""" return self._sampling_logits @property def masked_dist(self) -> D.Categorical: """Get the masked distribution for sampling operations.""" return self._sampling_dist @property def position_level_masking(self) -> bool: """Whether the mask is position-level (True) or token-level (False).""" return self._position_level_masking

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources