# Quantization The Arm VGF delegate can be used to execute quantized models. To quantize a model so that is supported by this delegate, the `VgfQuantizer` should be used. Currently the symmetric `int8` config defined by `executorch.backends.arm.quantizer.arm_quantizer.get_symmetric_quantization_config` is the main config available to use with the VGF quantizer. ### Supported Quantization Schemes The quantization schemes supported by the VGF Backend are: - 8-bit symmetric weights with 8-bit asymmetric activations (via the PT2E quantization flow). - Supports both static and dynamic activations - Supports per-channel and per-tensor schemes Weight-only quantization is not currently supported on the VGF backend. ### Partial Quantization The VGF backend supports partial quantization, where only parts of the model are quantized while others remain in floating-point. This can be useful for models where certain layers are not well-suited for quantization or when a balance between performance and accuracy is desired. For every node (op) in the graph, the quantizer looks at the *quantization configuration* set for that specific node. If the configuration is set to `None`, the node is left in floating-point; if it is provided (not `None`), the node is quantized according to that configuration. With the [Quantization API](#quantization-api), users can specify the quantization configurations for specific layers or submodules of the model. The `set_global` method is first used to set a default quantization configuration (could be `None` as explained above) for all nodes in the model. Then, configurations for specific layers or submodules can override the global setting using the `set_module_name` or `set_module_type` methods. ### Quantization API ```python class VgfQuantizer(compile_spec: 'VgfCompileSpec') -> 'None' ``` Quantizer supported by the Arm Vgf backend. Args: - **compile_spec (VgfCompileSpec)**: Backend compile specification for Vgf targets. ```python def VgfQuantizer.quantize_with_submodules(self, model: 'GraphModule', calibration_samples: 'list[tuple]', is_qat: 'bool' = False): ``` Quantizes a GraphModule in a way such that conditional submodules are handled properly. Args: - **model (GraphModule)**: The model to quantize. - **calibration_samples (list[tuple])**: A list of inputs to used to calibrate the model during quantization. To properly calibrate a model with submodules, at least one sample per code path is needed. - **is_qat (bool)**: Whether to do quantization aware training or not. Returns: - **GraphModule**: The quantized model. ```python def VgfQuantizer.set_global(self, quantization_config: 'QuantizationConfig') -> 'TOSAQuantizer': ``` Set quantization_config for submodules not matched by other filters. Args: - **quantization_config (QuantizationConfig)**: Configuration to apply to modules that are not captured by name or type filters. ```python def VgfQuantizer.set_io(self, quantization_config: 'QuantizationConfig') -> 'TOSAQuantizer': ``` Set quantization_config for input and output nodes. Args: - **quantization_config (QuantizationConfig)**: Configuration describing activation quantization for model inputs and outputs. ```python def VgfQuantizer.set_module_name(self, module_name: 'str', quantization_config: 'Optional[QuantizationConfig]') -> 'TOSAQuantizer': ``` Set quantization_config for submodules with a given module name. For example, calling set_module_name("blocks.sub") quantizes supported patterns for that submodule with the provided quantization_config. Args: - **module_name (str)**: Fully qualified module name to configure. - **quantization_config (QuantizationConfig)**: Configuration to apply to the named submodule. ```python def VgfQuantizer.set_module_type(self, module_type: 'Callable', quantization_config: 'QuantizationConfig') -> 'TOSAQuantizer': ``` Set quantization_config for submodules with a given module type. For example, calling set_module_type(Sub) quantizes supported patterns in each Sub instance with the provided quantization_config. Args: - **module_type (Callable)**: Type whose submodules should use the provided quantization configuration. - **quantization_config (QuantizationConfig)**: Configuration to apply to submodules of the given type. ```python def VgfQuantizer.transform_for_annotation(self, model: 'GraphModule') -> 'GraphModule': ``` Transform the graph to prepare it for quantization annotation. Currently transforms scalar values to tensor attributes. Args: - **model (GraphModule)**: Model whose graph will be transformed. Returns: - **GraphModule**: Transformed model prepared for annotation.