Prerequisite | ETRecord - ExecuTorch Record =========================================== Overview -------- ``ETRecord`` is intended to be the debug artifact that is generated by users ahead of time (when they export their model to run on ExecuTorch). To draw a rough equivalent to conventional software development, ``ETRecord`` can be considered as the binary built with debug symbols that is used for debugging in GNU Debugger (gdb). It is expected that the user will supply this to the ExecuTorch Developer Tools in order for them to debug and visualize their model. ``ETRecord`` contains numerous components such as: * Edge dialect graph with debug handles * Delegate debug handle maps The ``ETRecord`` object itself is intended to be opaque to users and they should not access any components inside it directly. It should be provided to the `Inspector API `__ to link back performance and debug data sourced from the runtime back to the Python source code. Generating an ``ETRecord`` -------------------------- There are multiple ways to generate an ``ETRecord`` for debugging purposes: Method 1: Using the ``generate_etrecord`` Parameter (Recommended) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The recommended approach is to enable ``ETRecord`` generation by passing ``generate_etrecord=True`` to your export API calls. This can be used with: * ``executorch.export()`` - High-level export API * ``to_edge()`` - Edge dialect conversion * ``to_edge_transform_and_lower()`` - Edge conversion with transformations and lowering After export completes, retrieve the ``ETRecord`` using the ``get_etrecord()`` method, and save it using the ``save()`` method: **Example with** ``executorch.export()``: .. code-block:: python import executorch from executorch.export import ExportRecipe # Export with ETRecord generation enabled session = executorch.export( model=model, example_inputs=[example_inputs], export_recipe=recipe, generate_etrecord=True # Enable ETRecord generation ) # Get and save the ETRecord etrecord = session.get_etrecord() etrecord.save("model_debug.etrecord") **Example with** ``to_edge()``: .. code-block:: python from executorch.exir.program import to_edge from torch.export import export # Export model first exported_program = export(model, example_inputs) # Convert to edge with ETRecord generation edge_manager = to_edge( exported_program, generate_etrecord=True # Enable ETRecord generation ) # Apply transformations edge_manager = edge_manager.to_backend() et_manager = edge_manager.to_executorch() # Get and save ETRecord etrecord = et_manager.get_etrecord() etrecord.save("edge_debug.etrecord") **Example with** ``to_edge_transform_and_lower()``: .. code-block:: python from executorch.exir.program import to_edge_transform_and_lower from torch.export import export # Export model first exported_program = export(model, example_inputs) # Transform and lower with ETRecord generation edge_manager = to_edge_transform_and_lower( exported_program, partitioner=[MyPartitioner()], generate_etrecord=True # Enable ETRecord generation ) et_manager = edge_manager.to_executorch() # Get and save ETRecord etrecord = et_manager.get_etrecord() etrecord.save("debug.etrecord") Method 2: Using the ``generate_etrecord()`` Function ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ You can also use the standalone ``generate_etrecord()`` function to generate an ``ETRecord``. This method requires you to provide the Edge Dialect program (returned by ``to_edge()``), the ExecuTorch program (returned by ``to_executorch()``), and optional models. .. warning:: When using the standalone function, users should do a deepcopy of the output of ``to_edge()`` and pass in the deepcopy to the ``generate_etrecord`` API. This is needed because the subsequent call, ``to_executorch()``, does an in-place mutation and will lose debug data in the process. **Example:** .. code-block:: python import copy from executorch.devtools import generate_etrecord from torch.export import export # Export and convert to edge aten_dialect = export(model, example_inputs, strict=True) edge_program = to_edge(aten_dialect) # Create copy for ETRecord (needed because to_executorch modifies in-place) edge_program_copy = copy.deepcopy(edge_program) # Convert to ExecutorchProgramManager executorch_program = edge_program_copy.to_executorch() # Generate ETRecord separately generate_etrecord( "debug.etrecord", edge_program, executorch_program, ) .. currentmodule:: executorch.devtools.etrecord._etrecord .. autofunction:: generate_etrecord Using an ``ETRecord`` --------------------- Pass the ``ETRecord`` as an optional argument into the `Inspector API `__ to access this data and do post-run analysis.