# NXP eIQ Neutron Quantization The eIQ Neutron NPU requires the operators delegated to be quantized. To quantize the PyTorch model for the Neutron backend, use the `NeutronQuantizer` from `backends/nxp/quantizer/neutron_quantizer.py`. The `NeutronQuantizer` is configured to quantize the model with quantization scheme supported by the eIQ Neutron NPU. ### Supported Quantization Schemes The Neutron delegate supports the following quantization schemes: - Static quantization with 8-bit symmetric weights and 8-bit asymmetric activations (via the PT2E quantization flow), per-tensor granularity. - Following operators are supported at this moment: - `aten.abs.default` - `aten.adaptive_avg_pool2d.default` - `aten.addmm.default` - `aten.add.Tensor` - `aten.avg_pool2d.default` - `aten.cat.default` - `aten.conv1d.default` - `aten.conv2d.default` - `aten.dropout.default` - `aten.flatten.using_ints` - `aten.hardtanh.default` - `aten.hardtanh_.default` - `aten.linear.default` - `aten.max_pool2d.default` - `aten.mean.dim` - `aten.mul.Tensor` - `aten.pad.default` - `aten.permute.default` - `aten.relu.default` and `aten.relu_.default` - `aten.reshape.default` - `aten.view.default` - `aten.softmax.int` - `aten.tanh.default`, `aten.tanh_.default` - `aten.sigmoid.default` - `aten.slice_copy.Tensor` ### Static 8-bit Quantization Using the PT2E Flow To perform 8-bit quantization with the PT2E flow, perform the following steps prior to exporting the model to edge: 1) Create an instance of the `NeutronQuantizer` class. 2) Use `torch.export.export` to export the model to ATen Dialect. 3) Call `prepare_pt2e` with the instance of the `NeutronQuantizer` to annotate the model with observers for quantization. 4) As static quantization is required, run the prepared model with representative samples to calibrate the quantized tensor activation ranges. 5) Call `convert_pt2e` to quantize the model. 6) Export and lower the model using the standard flow. The output of `convert_pt2e` is a PyTorch model which can be exported and lowered using the normal flow. As it is a regular PyTorch model, it can also be used to evaluate the accuracy of the quantized model using standard PyTorch techniques. To quantize the model, you can use the PT2E workflow: ```python import torch import torchvision.models as models from torchvision.models.mobilenetv2 import MobileNet_V2_Weights from executorch.backends.nxp.quantizer.neutron_quantizer import NeutronQuantizer from executorch.backends.nxp.backend.neutron_target_spec import NeutronTargetSpec from executorch.backends.nxp.neutron_partitioner import NeutronPartitioner from executorch.backends.nxp.nxp_backend import generate_neutron_compile_spec from executorch.exir import to_edge_transform_and_lower from torchao.quantization.pt2e.quantize_pt2e import convert_pt2e, prepare_pt2e model = models.mobilenetv2.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).eval() sample_inputs = (torch.randn(1, 3, 224, 224), ) target_spec = NeutronTargetSpec(target="imxrt700", converter_flavor="SDK_25_09") quantizer = NeutronQuantizer(neutron_target_spec) # (1) training_ep = torch.export.export(model, sample_inputs).module() # (2) prepared_model = prepare_pt2e(training_ep, quantizer) # (3) for cal_sample in [torch.randn(1, 3, 224, 224)]: # Replace with representative model inputs prepared_model(cal_sample) # (4) Calibrate quantized_model = convert_pt2e(prepared_model) # (5) compile_spec = generate_neutron_compile_spec( "imxrt700", operators_not_to_delegate=None, neutron_converter_flavor="SDK_25_06", ) et_program = to_edge_transform_and_lower( # (6) torch.export.export(quantized_model, sample_inputs), partitioner=[NeutronPartitioner(compile_spec=compile_spec)], ).to_executorch() ``` Or you can use the predefined function for post training quantization from NXP Backend implementation: ```python from executorch.backends.nxp.quantizer.neutron_quantizer import NeutronQuantizer from executorch.backends.nxp.backend.neutron_target_spec import NeutronTargetSpec from executorch.backends.nxp.quantizer.utils import calibrate_and_quantize ... target_spec = NeutronTargetSpec(target="imxrt700", converter_flavor="SDK_25_09") quantized_graph_module = calibrate_and_quantize( aten_model, calibration_inputs, NeutronQuantizer(neutron_target_spec=target_spec), ) ``` See [PyTorch 2 Export Post Training Quantization](https://docs.pytorch.org/ao/main/tutorials_source/pt2e_quant_ptq.html) for more information.