# Quantization The Arm VGF delegate can be used to execute quantized models. To quantize a model so that is supported by this delegate, the `VgfQuantizer` should be used. Currently the symmetric `int8` config defined by `executorch.backends.arm.quantizer.arm_quantizer.get_symmetric_quantization_config` is the main config available to use with the VGF quantizer. ### Supported Quantization Schemes The quantization schemes supported by the VGF Backend are: - 8-bit symmetric weights with 8-bit asymmetric activations (via the PT2E quantization flow). - Supports both static and dynamic activations - Supports per-channel and per-tensor schemes Weight-only quantization is not currently supported on the VGF backend. ### Quantization API ```python class VgfQuantizer(compile_spec: 'VgfCompileSpec') -> 'None' ``` Quantizer supported by the Arm Vgf backend. Args: - **compile_spec**: A VgfCompileSpec instance. ```python def VgfQuantizer.set_global(self, quantization_config: 'QuantizationConfig') -> 'TOSAQuantizer': ``` Set quantization_config for submodules that are not already annotated by name or type filters. Args: - **quantization_config**: The QuantizationConfig to set as global configuration. ```python def VgfQuantizer.set_io(self, quantization_config: 'QuantizationConfig') -> 'TOSAQuantizer': ``` Set quantization_config for input and output nodes. Args: - **quantization_config**: The QuantizationConfig to set for input and output nodes. ```python def VgfQuantizer.set_module_name(self, module_name: 'str', quantization_config: 'Optional[QuantizationConfig]') -> 'TOSAQuantizer': ``` Set quantization_config for a submodule with name: `module_name`, for example: quantizer.set_module_name("blocks.sub"), it will quantize all supported operator/operator patterns in the submodule with this module name with the given `quantization_config` Args: - **module_name**: The name of the submodule to set the quantization config for. - **quantization_config**: The QuantizationConfig to set for the submodule. ```python def VgfQuantizer.set_module_type(self, module_type: 'Callable', quantization_config: 'QuantizationConfig') -> 'TOSAQuantizer': ``` Set quantization_config for a submodule with type: `module_type`, for example: quantizer.set_module_name(Sub) or quantizer.set_module_name(nn.Linear), it will quantize all supported operator/operator patterns in the submodule with this module type with the given `quantization_config`. Args: - **module_type**: The type of the submodule to set the quantization config for. - **quantization_config**: The QuantizationConfig to set for the submodule. ```python def VgfQuantizer.transform_for_annotation(self, model: 'GraphModule') -> 'GraphModule': ``` An initial pass for transforming the graph to prepare it for annotation. Currently transforms scalar values to tensor attributes. Args: - **model**: The model to transform. Returns: The transformed model.