torch.map ============= dynamic_shape_map ^^^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`torch.map `, :doc:`torch.dynamic-shape ` Support Level: SUPPORTED Original source code: .. code-block:: python # mypy: allow-untyped-defs import torch from functorch.experimental.control_flow import map class DynamicShapeMap(torch.nn.Module): """ functorch map() maps a function over the first tensor dimension. """ def forward(self, xs, y): def body(x, y): return x + y return map(body, xs, y) example_args = (torch.randn(3, 2), torch.randn(2)) tags = {"torch.dynamic-shape", "torch.map"} model = DynamicShapeMap() torch.export.export(model, example_args) Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, xs: "f32[3, 2]", y: "f32[2]"): body_graph_0 = self.body_graph_0 map_impl = torch.ops.higher_order.map_impl(body_graph_0, [xs], [y]); body_graph_0 = xs = y = None getitem: "f32[3, 2]" = map_impl[0]; map_impl = None return (getitem,) class body_graph_0(torch.nn.Module): def forward(self, xs: "f32[2]", y: "f32[2]"): add: "f32[2]" = torch.ops.aten.add.Tensor(xs, y); xs = y = None return (add,) Graph signature: # inputs xs: USER_INPUT y: USER_INPUT # outputs getitem: USER_OUTPUT Range constraints: {}