# DDP Communication Hooks DDP communication hook is a generic interface to control how to communicate gradients across workers by overriding the vanilla allreduce in [DistributedDataParallel](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel.). A few built-in communication hooks are provided, and users can easily apply any of these hooks to optimize communication. Besides, the hook interface can also support user-defined communication strategies for more advanced use cases. ## How to Use a Communication Hook? To use a communication hook, the user just needs to let the DDP model register the hook before the training loop as below. {func}`torch.nn.parallel.DistributedDataParallel.register_comm_hook` ## What Does a Communication Hook Operate On? A communication hook provides a flexible way to allreduce gradients. Therefore, it mainly operates on the gradients on each replica before allreduce, which are bucketized to increase the overlap between communication and computation. Particularly, {class}`torch.distributed.GradBucket` represents a bucket of gradient tensors to be allreduced. ```{eval-rst} .. autoclass:: torch.distributed.GradBucket .. autofunction:: torch.distributed.GradBucket.index .. autofunction:: torch.distributed.GradBucket.buffer .. autofunction:: torch.distributed.GradBucket.gradients .. autofunction:: torch.distributed.GradBucket.is_last .. autofunction:: torch.distributed.GradBucket.set_buffer .. autofunction:: torch.distributed.GradBucket.parameters ``` ## Default Communication Hooks Default communication hooks are simple **stateless** hooks, so the input state in `register_comm_hook` is either a process group or `None`. The input `bucket` is a {class}`torch.distributed.GradBucket` object. ```{eval-rst} .. currentmodule:: torch.distributed.algorithms.ddp_comm_hooks.default_hooks .. autofunction:: allreduce_hook .. autofunction:: fp16_compress_hook .. autofunction:: bf16_compress_hook ``` Additionally, a communication hook wrapper is provided to support {meth}`~fp16_compress_hook` or {meth}`~bf16_compress_hook` as a wrapper, which can be combined with other communication hooks. ```{eval-rst} .. autofunction:: fp16_compress_wrapper .. autofunction:: bf16_compress_wrapper ``` ## PowerSGD Communication Hook PowerSGD ([Vogels et al., NeurIPS 2019](https://arxiv.org/abs/1905.13727)) is a gradient compression algorithm, which can provide very high compression rates and accelerate bandwidth-bound distributed training. This algorithm needs to maintain both some hyperparameters and the internal state. Therefore, PowerSGD communication hook is a **stateful** hook, and the user needs to provide a state object defined as below. ### PowerSGD State ```{eval-rst} .. currentmodule:: torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook .. autoclass:: PowerSGDState ``` ### PowerSGD Hooks ```{warning} PowerSGD typically requires extra memory of the same size as the model's gradients to enable error feedback, which can compensate for biased compressed communication and improve accuracy. ``` ```{warning} PowerSGD hooks may conflict with [Apex automatic mixed precision package](https://github.com/NVIDIA/apex). Please use PyTorch [native automatic mixed precision package](https://pytorch.org/docs/stable/amp.html) instead. ``` ```{eval-rst} .. autofunction:: powerSGD_hook .. autofunction:: batched_powerSGD_hook ``` ## Debugging Communication Hooks As the name implies, debugging communication hooks are **only** used for debugging and performance optimization purpose. ```{eval-rst} .. currentmodule:: torch.distributed.algorithms.ddp_comm_hooks.debugging_hooks ``` ```{warning} Debugging communication hooks do not necessarily output the correct results. ``` ```{eval-rst} .. autofunction:: noop_hook ``` ## Checkpointing of Communication Hooks ```{eval-rst} .. currentmodule:: torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook ``` A stateful communication hook can be saved as a part of model checkpointing to enable trainer restarts. To make a hook serializable, ``__setstate__`` and ``__getstate__`` should be defined. ```{warning} `__getstate__` should exclude non-serializable attributes from a returned dictionary. ``` ```{warning} `__setstate__` should properly initialize non-serializable attributes, excluded from a provided `state`. ``` {class}`PowerSGDState` has `__setstate__` and `__getstate__` implemented and can be used as a reference. ```{eval-rst} .. class:: PowerSGDState :noindex: .. automethod:: PowerSGDState.__getstate__ .. automethod:: PowerSGDState.__setstate__ ``` Here is a simple, end-to-end example of saving and reloading PowerSGD state and hook. ```python import os import sys import tempfile import torch import torch.distributed as dist import torch.nn as nn import torch.optim as optim import torch.multiprocessing as mp from torch.nn.parallel import DistributedDataParallel from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook as powerSGD class SimpleModel(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(24,24) self.relu = nn.ReLU() self.fc2 = nn.Linear(24,12) def forward(self, x): return self.fc2(self.relu(self.fc1(x))) def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("nccl", rank=rank, world_size=world_size) def cleanup(): dist.destroy_process_group() def run_demo(demo_fn, world_size): mp.spawn( demo_fn, args=(world_size,), nprocs=world_size, join=True) def demo_serialization(rank, world_size): setup(rank, world_size) CHECKPOINT = tempfile.gettempdir() + "/checkpoint.pt" model = SimpleModel().to(rank) ddp_model = DistributedDataParallel(model, device_ids=[rank]) powersgd_hook = powerSGD.powerSGD_hook powersgd_state = powerSGD.PowerSGDState(process_group=None) optimizer = optim.SGD(ddp_model.parameters(), lr=0.001) ddp_model.register_comm_hook(powersgd_state, powersgd_hook) state = { 'state_dict': ddp_model.state_dict(), 'comm_hook': powersgd_hook, 'comm_hook_state': powersgd_state} if rank == 0: torch.save(state, CHECKPOINT) dist.barrier() map_location = {'cuda:%d' % 0: 'cuda:%d' % rank} checkpoint = torch.load(CHECKPOINT, map_location=map_location) new_ddp_model = DistributedDataParallel(SimpleModel().to(rank), device_ids=[rank]) new_ddp_model.load_state_dict(checkpoint['state_dict']) powersgd_hook = checkpoint['comm_hook'] powersgd_state = checkpoint['comm_hook_state'] new_ddp_model.register_comm_hook(powersgd_state, powersgd_hook) if rank == 0: os.remove(CHECKPOINT) cleanup() if __name__ == "__main__": n_gpus = torch.cuda.device_count() assert n_gpus >= 2, f"Requires at least 2 GPUs to run, but got {n_gpus}" world_size = n_gpus run_demo(demo_serialization, world_size) ``` ## Acknowledgements Many thanks to PowerSGD paper author **Thijs Vogels** for the code review on PowerSGD communication hook, as well as the [comparison experiments](https://observablehq.com/@tvogels/powersgd-benchmark), which show that the performance of PowerSGD communication hook is on par with the implementation in the original [paper](https://arxiv.org/abs/1905.13727).