torch.signal.windows.general_hamming#
- torch.signal.windows.general_hamming(M, *, alpha=0.54, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[source]#
- Computes the general Hamming window. - The general Hamming window is defined as follows: - The window is normalized to 1 (maximum value is 1). However, the 1 doesn’t appear if - Mis even and- symis True.- Parameters
- M (int) – the length of the window. In other words, the number of points of the returned window. 
- Keyword Arguments
- alpha (float, optional) – the window coefficient. Default: 0.54. 
- sym (bool, optional) – If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True. 
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. Default: if- None, uses a global default (see- torch.set_default_dtype()).
- layout ( - torch.layout, optional) – the desired layout of returned Tensor. Default:- torch.strided.
- device ( - torch.device, optional) – the desired device of returned tensor. Default: if- None, uses the current device for the default tensor type (see- torch.set_default_device()).- devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: - False.
 
- Return type
 - Examples: - >>> # Generates a symmetric Hamming window with the general Hamming window. >>> torch.signal.windows.general_hamming(10, sym=True) tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800]) >>> # Generates a periodic Hann window with the general Hamming window. >>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False) tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])