torch.quantized_max_pool2d¶
- torch.quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) Tensor¶
- Applies a 2D max pooling over an input quantized tensor composed of several input planes. - Parameters
- input (Tensor) – quantized tensor 
- kernel_size ( - list of int) – the size of the sliding window
- stride ( - list of int, optional) – the stride of the sliding window
- padding ( - list of int, optional) – padding to be added on both sides, must be >= 0 and <= kernel_size / 2
- dilation ( - list of int, optional) – The stride between elements within a sliding window, must be > 0. Default 1
- ceil_mode (bool, optional) – If True, will use ceil instead of floor to compute the output shape. Defaults to False. 
 
- Returns
- A quantized tensor with max_pool2d applied. 
- Return type
 - Example: - >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) >>> torch.quantized_max_pool2d(qx, [2,2]) tensor([[[[1.5000]], [[1.5000]]], [[[0.0000]], [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3)