LinearLR¶
- class torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=0.3333333333333333, end_factor=1.0, total_iters=5, last_epoch=-1)[source][source]¶
- Decays the learning rate of each parameter group by linearly changing small multiplicative factor. - The multiplication is done until the number of epoch reaches a pre-defined milestone: total_iters. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. - Parameters
- optimizer (Optimizer) – Wrapped optimizer. 
- start_factor (float) – The number we multiply learning rate in the first epoch. The multiplication factor changes towards end_factor in the following epochs. Default: 1./3. 
- end_factor (float) – The number we multiply learning rate at the end of linear changing process. Default: 1.0. 
- total_iters (int) – The number of iterations that multiplicative factor reaches to 1. Default: 5. 
- last_epoch (int) – The index of the last epoch. Default: -1. 
 
 - Example - >>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.025 if epoch == 0 >>> # lr = 0.03125 if epoch == 1 >>> # lr = 0.0375 if epoch == 2 >>> # lr = 0.04375 if epoch == 3 >>> # lr = 0.05 if epoch >= 4 >>> scheduler = LinearLR(optimizer, start_factor=0.5, total_iters=4) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() - load_state_dict(state_dict)[source]¶
- Load the scheduler’s state. - Parameters
- state_dict (dict) – scheduler state. Should be an object returned from a call to - state_dict().