torch.nn.functional.max_pool2d¶
- torch.nn.functional.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)[source]¶
- Applies a 2D max pooling over an input signal composed of several input planes. - Note - The order of - ceil_modeand- return_indicesis different from what seen in- MaxPool2d, and will change in a future release.- See - MaxPool2dfor details.- Parameters
- input – input tensor , minibatch dim optional. 
- kernel_size – size of the pooling region. Can be a single number or a tuple (kH, kW) 
- stride – stride of the pooling operation. Can be a single number or a tuple (sH, sW). Default: - kernel_size
- padding – Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2. 
- dilation – The stride between elements within a sliding window, must be > 0. 
- ceil_mode – If - True, will use ceil instead of floor to compute the output shape. This ensures that every element in the input tensor is covered by a sliding window.
- return_indices – If - True, will return the argmax along with the max values. Useful for- torch.nn.functional.max_unpool2dlater