LazyInstanceNorm3d¶
- class torch.nn.LazyInstanceNorm3d(eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)[source][source]¶
- A - torch.nn.InstanceNorm3dmodule with lazy initialization of the- num_featuresargument.- The - num_featuresargument of the- InstanceNorm3dis inferred from the- input.size(1). The attributes that will be lazily initialized are weight, bias, running_mean and running_var.- Check the - torch.nn.modules.lazy.LazyModuleMixinfor further documentation on lazy modules and their limitations.- Parameters
- num_features – from an expected input of size or 
- eps (float) – a value added to the denominator for numerical stability. Default: 1e-5 
- momentum (Optional[float]) – the value used for the running_mean and running_var computation. Default: 0.1 
- affine (bool) – a boolean value that when set to - True, this module has learnable affine parameters, initialized the same way as done for batch normalization. Default:- False.
- track_running_stats (bool) – a boolean value that when set to - True, this module tracks the running mean and variance, and when set to- False, this module does not track such statistics and always uses batch statistics in both training and eval modes. Default:- False
 
 - Shape:
- Input: or 
- Output: or (same shape as input) 
 
 - cls_to_become[source]¶
- alias of - InstanceNorm3d