torch.fake_quantize_per_tensor_affine¶
- torch.fake_quantize_per_tensor_affine(input, scale, zero_point, quant_min, quant_max) Tensor¶
- Returns a new tensor with the data in - inputfake quantized using- scale,- zero_point,- quant_minand- quant_max.- Parameters
- input (Tensor) – the input value(s), - torch.float32tensor
- scale (double scalar or - float32Tensor) – quantization scale
- zero_point (int64 scalar or - int32Tensor) – quantization zero_point
- quant_min (int64) – lower bound of the quantized domain 
- quant_max (int64) – upper bound of the quantized domain 
 
- Returns
- A newly fake_quantized - torch.float32tensor
- Return type
 - Example: - >>> x = torch.randn(4) >>> x tensor([ 0.0552, 0.9730, 0.3973, -1.0780]) >>> torch.fake_quantize_per_tensor_affine(x, 0.1, 0, 0, 255) tensor([0.1000, 1.0000, 0.4000, 0.0000]) >>> torch.fake_quantize_per_tensor_affine(x, torch.tensor(0.1), torch.tensor(0), 0, 255) tensor([0.1000, 1.0000, 0.4000, 0.0000])