torch.baddbmm¶
- torch.baddbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) Tensor¶
- Performs a batch matrix-matrix product of matrices in - batch1and- batch2.- inputis added to the final result.- batch1and- batch2must be 3-D tensors each containing the same number of matrices.- If - batch1is a tensor,- batch2is a tensor, then- inputmust be broadcastable with a tensor and- outwill be a tensor. Both- alphaand- betamean the same as the scaling factors used in- torch.addbmm().- If - betais 0, then the content of- inputwill be ignored, and nan and inf in it will not be propagated.- For inputs of type FloatTensor or DoubleTensor, arguments - betaand- alphamust be real numbers, otherwise they should be integers.- This operator supports TensorFloat32. - On certain ROCm devices, when using float16 inputs this module will use different precision for backward. - Parameters
- Keyword Arguments
- beta (Number, optional) – multiplier for - input()
- alpha (Number, optional) – multiplier for () 
- out (Tensor, optional) – the output tensor. 
 
 - Example: - >>> M = torch.randn(10, 3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.baddbmm(M, batch1, batch2).size() torch.Size([10, 3, 5])