torch.Tensor.scatter_¶
- Tensor.scatter_(dim, index, src, *, reduce=None) Tensor¶
- Writes all values from the tensor - srcinto- selfat the indices specified in the- indextensor. For each value in- src, its output index is specified by its index in- srcfor- dimension != dimand by the corresponding value in- indexfor- dimension = dim.- For a 3-D tensor, - selfis updated as:- self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 - This is the reverse operation of the manner described in - gather().- self,- indexand- src(if it is a Tensor) should all have the same number of dimensions. It is also required that- index.size(d) <= src.size(d)for all dimensions- d, and that- index.size(d) <= self.size(d)for all dimensions- d != dim. Note that- indexand- srcdo not broadcast.- Moreover, as for - gather(), the values of- indexmust be between- 0and- self.size(dim) - 1inclusive.- Warning - When indices are not unique, the behavior is non-deterministic (one of the values from - srcwill be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)!- Note - The backward pass is implemented only for - src.shape == index.shape.- Additionally accepts an optional - reduceargument that allows specification of an optional reduction operation, which is applied to all values in the tensor- srcinto- selfat the indices specified in the- index. For each value in- src, the reduction operation is applied to an index in- selfwhich is specified by its index in- srcfor- dimension != dimand by the corresponding value in- indexfor- dimension = dim.- Given a 3-D tensor and reduction using the multiplication operation, - selfis updated as:- self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 - Reducing with the addition operation is the same as using - scatter_add_().- Warning - The reduce argument with Tensor - srcis deprecated and will be removed in a future PyTorch release. Please use- scatter_reduce_()instead for more reduction options.- Parameters
- Keyword Arguments
- reduce (str, optional) – reduction operation to apply, can be either - 'add'or- 'multiply'.
 - Example: - >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]]) - scatter_(dim, index, value, *, reduce=None) Tensor:
 - Writes the value from - valueinto- selfat the indices specified in the- indextensor. This operation is equivalent to the previous version, with the- srctensor filled entirely with- value.- Parameters
- dim (int) – the axis along which to index 
- index (LongTensor) – the indices of elements to scatter, can be either empty or of the same dimensionality as - src. When empty, the operation returns- selfunchanged.
- value (Scalar) – the value to scatter. 
 
- Keyword Arguments
- reduce (str, optional) – reduction operation to apply, can be either - 'add'or- 'multiply'.
 - Example: - >>> index = torch.tensor([[0, 1]]) >>> value = 2 >>> torch.zeros(3, 5).scatter_(0, index, value) tensor([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 0., 0., 0.]])