torch.transpose¶
- torch.transpose(input, dim0, dim1) Tensor¶
- Returns a tensor that is a transposed version of - input. The given dimensions- dim0and- dim1are swapped.- If - inputis a strided tensor then the resulting- outtensor shares its underlying storage with the- inputtensor, so changing the content of one would change the content of the other.- If - inputis a sparse tensor then the resulting- outtensor does not share the underlying storage with the- inputtensor.- If - inputis a sparse tensor with compressed layout (SparseCSR, SparseBSR, SparseCSC or SparseBSC) the arguments- dim0and- dim1must be both batch dimensions, or must both be sparse dimensions. The batch dimensions of a sparse tensor are the dimensions preceding the sparse dimensions.- Note - Transpositions which interchange the sparse dimensions of a SparseCSR or SparseCSC layout tensor will result in the layout changing between the two options. Transposition of the sparse dimensions of a ` SparseBSR` or SparseBSC layout tensor will likewise generate a result with the opposite layout. - Parameters
 - Example: - >>> x = torch.randn(2, 3) >>> x tensor([[ 1.0028, -0.9893, 0.5809], [-0.1669, 0.7299, 0.4942]]) >>> torch.transpose(x, 0, 1) tensor([[ 1.0028, -0.1669], [-0.9893, 0.7299], [ 0.5809, 0.4942]]) - See also - torch.t().