torch.mean¶
- torch.mean(input, *, dtype=None) Tensor¶
- Note - If the input tensor is empty, - torch.mean()returns- nan. This behavior is consistent with NumPy and follows the definition that the mean over an empty set is undefined.- Returns the mean value of all elements in the - inputtensor. Input must be floating point or complex.- Parameters
- input (Tensor) – the input tensor, either of floating point or complex dtype 
- Keyword Arguments
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to- dtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
 - Example: - >>> a = torch.randn(1, 3) >>> a tensor([[ 0.2294, -0.5481, 1.3288]]) >>> torch.mean(a) tensor(0.3367) - torch.mean(input, dim, keepdim=False, *, dtype=None, out=None) Tensor
 - Returns the mean value of each row of the - inputtensor in the given dimension- dim. If- dimis a list of dimensions, reduce over all of them.- If - keepdimis- True, the output tensor is of the same size as- inputexcept in the dimension(s)- dimwhere it is of size 1. Otherwise,- dimis squeezed (see- torch.squeeze()), resulting in the output tensor having 1 (or- len(dim)) fewer dimension(s).- Parameters
- Keyword Arguments
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted to- dtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None.
- out (Tensor, optional) – the output tensor. 
 
 - See also - torch.nanmean()computes the mean value of non-NaN elements.- Example: - >>> a = torch.randn(4, 4) >>> a tensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279], [-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]]) >>> torch.mean(a, 1) tensor([-0.0163, -0.5085, -0.4599, 0.1807]) >>> torch.mean(a, 1, True) tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]])