torch.autograd.gradcheck.gradgradcheck¶
- torch.autograd.gradcheck.gradgradcheck(func, inputs, grad_outputs=None, *, eps=1e-06, atol=1e-05, rtol=0.001, gen_non_contig_grad_outputs=False, raise_exception=True, nondet_tol=0.0, check_undefined_grad=True, check_grad_dtypes=False, check_batched_grad=False, check_fwd_over_rev=False, check_rev_over_rev=True, fast_mode=False, masked=False)[source]¶
Check gradients of gradients computed via small finite differences against analytical gradients wrt tensors in
inputsandgrad_outputsthat are of floating point or complex type and withrequires_grad=True.This function checks that backpropagating through the gradients computed to the given
grad_outputsare correct.The check between numerical and analytical gradients uses
allclose().Note
The default values are designed for
inputandgrad_outputsof double precision. This check will likely fail if they are of less precision, e.g.,FloatTensor.Warning
If any checked tensor in
inputandgrad_outputshas overlapping memory, i.e., different indices pointing to the same memory address (e.g., fromtorch.expand()), this check will likely fail because the numerical gradients computed by point perturbation at such indices will change values at all other indices that share the same memory address.- Parameters
func (function) – a Python function that takes Tensor inputs and returns a Tensor or a tuple of Tensors
grad_outputs (tuple of Tensor or Tensor, optional) – The gradients with respect to the function’s outputs.
eps (float, optional) – perturbation for finite differences
atol (float, optional) – absolute tolerance
rtol (float, optional) – relative tolerance
gen_non_contig_grad_outputs (bool, optional) – if
grad_outputsisNoneandgen_non_contig_grad_outputsisTrue, the randomly generated gradient outputs are made to be noncontiguousraise_exception (bool, optional) – indicating whether to raise an exception if the check fails. The exception gives more information about the exact nature of the failure. This is helpful when debugging gradchecks.
nondet_tol (float, optional) – tolerance for non-determinism. When running identical inputs through the differentiation, the results must either match exactly (default, 0.0) or be within this tolerance. Note that a small amount of nondeterminism in the gradient will lead to larger inaccuracies in the second derivative.
check_undefined_grad (bool, optional) – if True, check if undefined output grads are supported and treated as zeros
check_batched_grad (bool, optional) – if True, check if we can compute batched gradients using prototype vmap support. Defaults to False.
fast_mode (bool, optional) – if True, run a faster implementation of gradgradcheck that no longer computes the entire jacobian.
masked (bool, optional) – if True, the gradients of unspecified elements of sparse tensors are ignored (default, False).
- Returns
True if all differences satisfy allclose condition
- Return type