.. _torch-library-docs:
torch.library
===================================
.. py:module:: torch.library
.. currentmodule:: torch.library
torch.library is a collection of APIs for extending PyTorch's core library
of operators. It contains utilities for testing custom operators, creating new
custom operators, and extending operators defined with PyTorch's C++ operator
registration APIs (e.g. aten operators).
For a detailed guide on effectively using these APIs, please see
Please see :ref:`custom-ops-landing-page`
for more details on how to effectively use these APIs.
Testing custom ops
------------------
Use :func:`torch.library.opcheck` to test custom ops for incorrect usage of the
Python torch.library and/or C++ TORCH_LIBRARY APIs. Also, if your operator supports
training, use :func:`torch.autograd.gradcheck` to test that the gradients are
mathematically correct.
.. autofunction:: opcheck
Creating new custom ops in Python
---------------------------------
Use :func:`torch.library.custom_op` to create new custom ops.
.. autofunction:: custom_op
Extending custom ops (created from Python or C++)
-------------------------------------------------
Use the register.* methods, such as :func:`torch.library.register_kernel` and
func:`torch.library.register_fake`, to add implementations
for any operators (they may have been created using :func:`torch.library.custom_op` or
via PyTorch's C++ operator registration APIs).
.. autofunction:: register_kernel
.. autofunction:: register_autograd
.. autofunction:: register_fake
.. autofunction:: register_vmap
.. autofunction:: impl_abstract
.. autofunction:: get_ctx
.. autofunction:: register_torch_dispatch
.. autofunction:: infer_schema
.. autoclass:: torch._library.custom_ops.CustomOpDef
.. automethod:: set_kernel_enabled
Low-level APIs
--------------
The following APIs are direct bindings to PyTorch's C++ low-level
operator registration APIs.
.. warning::
The low-level operator registration APIs and the PyTorch Dispatcher are a
complicated PyTorch concept. We recommend you use the higher level APIs above
(that do not require a torch.library.Library object) when possible.
This blog post `_
is a good starting point to learn about the PyTorch Dispatcher.
A tutorial that walks you through some examples on how to use this API is available on `Google Colab `_.
.. autoclass:: torch.library.Library
:members:
.. autofunction:: fallthrough_kernel
.. autofunction:: define
.. autofunction:: impl