torch.fft.ifft¶
- torch.fft.ifft(input, n=None, dim=-1, norm=None, *, out=None) Tensor¶
Computes the one dimensional inverse discrete Fourier transform of
input.Note
Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension.
- Parameters
input (Tensor) – the input tensor
n (int, optional) – Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the IFFT.
dim (int, optional) – The dimension along which to take the one dimensional IFFT.
norm (str, optional) –
Normalization mode. For the backward transform (
ifft()), these correspond to:"forward"- no normalization"backward"- normalize by1/n"ortho"- normalize by1/sqrt(n)(making the IFFT orthonormal)
Calling the forward transform (
fft()) with the same normalization mode will apply an overall normalization of1/nbetween the two transforms. This is required to makeifft()the exact inverse.Default is
"backward"(normalize by1/n).
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example
>>> t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j]) >>> torch.fft.ifft(t) tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])