torch.where¶
- torch.where(condition, input, other, *, out=None) Tensor¶
- Return a tensor of elements selected from either - inputor- other, depending on- condition.- The operation is defined as: - Note - The tensors - condition,- input,- othermust be broadcastable.- Parameters
- condition (BoolTensor) – When True (nonzero), yield input, otherwise yield other 
- input (Tensor or Scalar) – value (if - inputis a scalar) or values selected at indices where- conditionis- True
- other (Tensor or Scalar) – value (if - otheris a scalar) or values selected at indices where- conditionis- False
 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
- Returns
- A tensor of shape equal to the broadcasted shape of - condition,- input,- other
- Return type
 - Example: - >>> x = torch.randn(3, 2) >>> y = torch.ones(3, 2) >>> x tensor([[-0.4620, 0.3139], [ 0.3898, -0.7197], [ 0.0478, -0.1657]]) >>> torch.where(x > 0, 1.0, 0.0) tensor([[0., 1.], [1., 0.], [1., 0.]]) >>> torch.where(x > 0, x, y) tensor([[ 1.0000, 0.3139], [ 0.3898, 1.0000], [ 0.0478, 1.0000]]) >>> x = torch.randn(2, 2, dtype=torch.double) >>> x tensor([[ 1.0779, 0.0383], [-0.8785, -1.1089]], dtype=torch.float64) >>> torch.where(x > 0, x, 0.) tensor([[1.0779, 0.0383], [0.0000, 0.0000]], dtype=torch.float64) - torch.where(condition) tuple of LongTensor
 - torch.where(condition)is identical to- torch.nonzero(condition, as_tuple=True).- Note - See also - torch.nonzero().