torch.nn.utils.rnn.pad_sequence¶
- torch.nn.utils.rnn.pad_sequence(sequences, batch_first=False, padding_value=0.0)[source]¶
Pad a list of variable length Tensors with
padding_value.pad_sequencestacks a list of Tensors along a new dimension, and pads them to equal length. For example, if the input is a list of sequences with sizeL x *andbatch_firstis False, the output is of sizeT x B x *.B is batch size. It is equal to the number of elements in
sequences. T is length of the longest sequence. L is length of the sequence. * is any number of trailing dimensions, including none.Example
>>> from torch.nn.utils.rnn import pad_sequence >>> a = torch.ones(25, 300) >>> b = torch.ones(22, 300) >>> c = torch.ones(15, 300) >>> pad_sequence([a, b, c]).size() torch.Size([25, 3, 300])
Note
This function returns a Tensor of size
T x B x *orB x T x *where T is the length of the longest sequence. This function assumes trailing dimensions and type of all the Tensors in sequences are same.- Parameters
- Returns
Tensor of size
T x B x *ifbatch_firstisFalse. Tensor of sizeB x T x *otherwise- Return type