Module¶
- class torch.nn.Module(*args, **kwargs)[source]¶
- Base class for all neural network modules. - Your models should also subclass this class. - Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes: - import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x)) - Submodules assigned in this way will be registered, and will have their parameters converted too when you call - to(), etc.- Note - As per the example above, an - __init__()call to the parent class must be made before assignment on the child.- Variables
- training (bool) – Boolean represents whether this module is in training or evaluation mode. 
 - add_module(name, module)[source]¶
- Add a child module to the current module. - The module can be accessed as an attribute using the given name. 
 - apply(fn)[source]¶
- Apply - fnrecursively to every submodule (as returned by- .children()) as well as self.- Typical use includes initializing the parameters of a model (see also torch.nn.init). - Parameters
- fn ( - Module-> None) – function to be applied to each submodule
- Returns
- self 
- Return type
 - Example: - >>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 
 - bfloat16()[source]¶
- Casts all floating point parameters and buffers to - bfloat16datatype.- Note - This method modifies the module in-place. - Returns
- self 
- Return type
 
 - buffers(recurse=True)[source]¶
- Return an iterator over module buffers. - Parameters
- recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. 
- Yields
- torch.Tensor – module buffer 
- Return type
 - Example: - >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L) 
 - compile(*args, **kwargs)[source]¶
- Compile this Module’s forward using - torch.compile().- This Module’s __call__ method is compiled and all arguments are passed as-is to - torch.compile().- See - torch.compile()for details on the arguments for this function.
 - cpu()[source]¶
- Move all model parameters and buffers to the CPU. - Note - This method modifies the module in-place. - Returns
- self 
- Return type
 
 - cuda(device=None)[source]¶
- Move all model parameters and buffers to the GPU. - This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized. - Note - This method modifies the module in-place. 
 - double()[source]¶
- Casts all floating point parameters and buffers to - doubledatatype.- Note - This method modifies the module in-place. - Returns
- self 
- Return type
 
 - eval()[source]¶
- Set the module in evaluation mode. - This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. - Dropout,- BatchNorm, etc.- This is equivalent with - self.train(False).- See Locally disabling gradient computation for a comparison between .eval() and several similar mechanisms that may be confused with it. - Returns
- self 
- Return type
 
 - extra_repr()[source]¶
- Set the extra representation of the module. - To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable. - Return type
 
 - float()[source]¶
- Casts all floating point parameters and buffers to - floatdatatype.- Note - This method modifies the module in-place. - Returns
- self 
- Return type
 
 - forward(*input)¶
- Define the computation performed at every call. - Should be overridden by all subclasses. - Note - Although the recipe for forward pass needs to be defined within this function, one should call the - Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
 - get_buffer(target)[source]¶
- Return the buffer given by - targetif it exists, otherwise throw an error.- See the docstring for - get_submodulefor a more detailed explanation of this method’s functionality as well as how to correctly specify- target.- Parameters
- target (str) – The fully-qualified string name of the buffer to look for. (See - get_submodulefor how to specify a fully-qualified string.)
- Returns
- The buffer referenced by - target
- Return type
- Raises
- AttributeError – If the target string references an invalid path or resolves to something that is not a buffer 
 
 - get_extra_state()[source]¶
- Return any extra state to include in the module’s state_dict. - Implement this and a corresponding - set_extra_state()for your module if you need to store extra state. This function is called when building the module’s state_dict().- Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes. - Returns
- Any extra state to store in the module’s state_dict 
- Return type
 
 - get_parameter(target)[source]¶
- Return the parameter given by - targetif it exists, otherwise throw an error.- See the docstring for - get_submodulefor a more detailed explanation of this method’s functionality as well as how to correctly specify- target.- Parameters
- target (str) – The fully-qualified string name of the Parameter to look for. (See - get_submodulefor how to specify a fully-qualified string.)
- Returns
- The Parameter referenced by - target
- Return type
- torch.nn.Parameter 
- Raises
- AttributeError – If the target string references an invalid path or resolves to something that is not an - nn.Parameter
 
 - get_submodule(target)[source]¶
- Return the submodule given by - targetif it exists, otherwise throw an error.- For example, let’s say you have an - nn.Module- Athat looks like this:- A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )- (The diagram shows an - nn.Module- A.- Ahas a nested submodule- net_b, which itself has two submodules- net_cand- linear.- net_cthen has a submodule- conv.)- To check whether or not we have the - linearsubmodule, we would call- get_submodule("net_b.linear"). To check whether we have the- convsubmodule, we would call- get_submodule("net_b.net_c.conv").- The runtime of - get_submoduleis bounded by the degree of module nesting in- target. A query against- named_modulesachieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists,- get_submoduleshould always be used.- Parameters
- target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.) 
- Returns
- The submodule referenced by - target
- Return type
- Raises
- AttributeError – If the target string references an invalid path or resolves to something that is not an - nn.Module
 
 - half()[source]¶
- Casts all floating point parameters and buffers to - halfdatatype.- Note - This method modifies the module in-place. - Returns
- self 
- Return type
 
 - ipu(device=None)[source]¶
- Move all model parameters and buffers to the IPU. - This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized. - Note - This method modifies the module in-place. 
 - load_state_dict(state_dict, strict=True, assign=False)[source]¶
- Copy parameters and buffers from - state_dictinto this module and its descendants.- If - strictis- True, then the keys of- state_dictmust exactly match the keys returned by this module’s- state_dict()function.- Warning - If - assignis- Truethe optimizer must be created after the call to- load_state_dictunless- get_swap_module_params_on_conversion()is- True.- Parameters
- state_dict (dict) – a dict containing parameters and persistent buffers. 
- strict (bool, optional) – whether to strictly enforce that the keys in - state_dictmatch the keys returned by this module’s- state_dict()function. Default:- True
- assign (bool, optional) – When - False, the properties of the tensors in the current module are preserved while when- True, the properties of the Tensors in the state dict are preserved. The only exception is the- requires_gradfield of- Default: ``False`
 
- Returns
- missing_keys is a list of str containing the missing keys 
- unexpected_keys is a list of str containing the unexpected keys 
 
- Return type
- NamedTuplewith- missing_keysand- unexpected_keysfields
 - Note - If a parameter or buffer is registered as - Noneand its corresponding key exists in- state_dict,- load_state_dict()will raise a- RuntimeError.
 - modules()[source]¶
- Return an iterator over all modules in the network. - Note - Duplicate modules are returned only once. In the following example, - lwill be returned only once.- Example: - >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True) 
 - named_buffers(prefix='', recurse=True, remove_duplicate=True)[source]¶
- Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. - Parameters
- prefix (str) – prefix to prepend to all buffer names. 
- recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True. 
- remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True. 
 
- Yields
- (str, torch.Tensor) – Tuple containing the name and buffer 
- Return type
 - Example: - >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size()) 
 - named_children()[source]¶
- Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. - Yields
- (str, Module) – Tuple containing a name and child module 
- Return type
 - Example: - >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module) 
 - named_modules(memo=None, prefix='', remove_duplicate=True)[source]¶
- Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. - Parameters
- Yields
- (str, Module) – Tuple of name and module 
 - Note - Duplicate modules are returned only once. In the following example, - lwill be returned only once.- Example: - >>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True)) 
 - named_parameters(prefix='', recurse=True, remove_duplicate=True)[source]¶
- Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. - Parameters
- prefix (str) – prefix to prepend to all parameter names. 
- recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. 
- remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True. 
 
- Yields
- (str, Parameter) – Tuple containing the name and parameter 
- Return type
 - Example: - >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size()) 
 - parameters(recurse=True)[source]¶
- Return an iterator over module parameters. - This is typically passed to an optimizer. - Parameters
- recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module. 
- Yields
- Parameter – module parameter 
- Return type
 - Example: - >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L) 
 - register_backward_hook(hook)[source]¶
- Register a backward hook on the module. - This function is deprecated in favor of - register_full_backward_hook()and the behavior of this function will change in future versions.- Returns
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type
- torch.utils.hooks.RemovableHandle
 
 - register_buffer(name, tensor, persistent=True)[source]¶
- Add a buffer to the module. - This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s - running_meanis not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting- persistentto- False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s- state_dict.- Buffers can be accessed as attributes using given names. - Parameters
- name (str) – name of the buffer. The buffer can be accessed from this module using the given name 
- tensor (Tensor or None) – buffer to be registered. If - None, then operations that run on buffers, such as- cuda, are ignored. If- None, the buffer is not included in the module’s- state_dict.
- persistent (bool) – whether the buffer is part of this module’s - state_dict.
 
 - Example: - >>> self.register_buffer('running_mean', torch.zeros(num_features)) 
 - register_forward_hook(hook, *, prepend=False, with_kwargs=False, always_call=False)[source]¶
- Register a forward hook on the module. - The hook will be called every time after - forward()has computed an output.- If - with_kwargsis- Falseor not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the- forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after- forward()is called. The hook should have the following signature:- hook(module, args, output) -> None or modified output - If - with_kwargsis- True, the forward hook will be passed the- kwargsgiven to the forward function and be expected to return the output possibly modified. The hook should have the following signature:- hook(module, args, kwargs, output) -> None or modified output - Parameters
- hook (Callable) – The user defined hook to be registered. 
- prepend (bool) – If - True, the provided- hookwill be fired before all existing- forwardhooks on this- torch.nn.modules.Module. Otherwise, the provided- hookwill be fired after all existing- forwardhooks on this- torch.nn.modules.Module. Note that global- forwardhooks registered with- register_module_forward_hook()will fire before all hooks registered by this method. Default:- False
- with_kwargs (bool) – If - True, the- hookwill be passed the kwargs given to the forward function. Default:- False
- always_call (bool) – If - Truethe- hookwill be run regardless of whether an exception is raised while calling the Module. Default:- False
 
- Returns
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type
- torch.utils.hooks.RemovableHandle
 
 - register_forward_pre_hook(hook, *, prepend=False, with_kwargs=False)[source]¶
- Register a forward pre-hook on the module. - The hook will be called every time before - forward()is invoked.- If - with_kwargsis false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the- forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:- hook(module, args) -> None or modified input - If - with_kwargsis true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:- hook(module, args, kwargs) -> None or a tuple of modified input and kwargs - Parameters
- hook (Callable) – The user defined hook to be registered. 
- prepend (bool) – If true, the provided - hookwill be fired before all existing- forward_prehooks on this- torch.nn.modules.Module. Otherwise, the provided- hookwill be fired after all existing- forward_prehooks on this- torch.nn.modules.Module. Note that global- forward_prehooks registered with- register_module_forward_pre_hook()will fire before all hooks registered by this method. Default:- False
- with_kwargs (bool) – If true, the - hookwill be passed the kwargs given to the forward function. Default:- False
 
- Returns
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type
- torch.utils.hooks.RemovableHandle
 
 - register_full_backward_hook(hook, prepend=False)[source]¶
- Register a backward hook on the module. - The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature: - hook(module, grad_input, grad_output) -> tuple(Tensor) or None - The - grad_inputand- grad_outputare tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of- grad_inputin subsequent computations.- grad_inputwill only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in- grad_inputand- grad_outputwill be- Nonefor all non-Tensor arguments.- For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function. - Warning - Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error. - Parameters
- hook (Callable) – The user-defined hook to be registered. 
- prepend (bool) – If true, the provided - hookwill be fired before all existing- backwardhooks on this- torch.nn.modules.Module. Otherwise, the provided- hookwill be fired after all existing- backwardhooks on this- torch.nn.modules.Module. Note that global- backwardhooks registered with- register_module_full_backward_hook()will fire before all hooks registered by this method.
 
- Returns
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type
- torch.utils.hooks.RemovableHandle
 
 - register_full_backward_pre_hook(hook, prepend=False)[source]¶
- Register a backward pre-hook on the module. - The hook will be called every time the gradients for the module are computed. The hook should have the following signature: - hook(module, grad_output) -> tuple[Tensor] or None - The - grad_outputis a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of- grad_outputin subsequent computations. Entries in- grad_outputwill be- Nonefor all non-Tensor arguments.- For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function. - Warning - Modifying inputs inplace is not allowed when using backward hooks and will raise an error. - Parameters
- hook (Callable) – The user-defined hook to be registered. 
- prepend (bool) – If true, the provided - hookwill be fired before all existing- backward_prehooks on this- torch.nn.modules.Module. Otherwise, the provided- hookwill be fired after all existing- backward_prehooks on this- torch.nn.modules.Module. Note that global- backward_prehooks registered with- register_module_full_backward_pre_hook()will fire before all hooks registered by this method.
 
- Returns
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type
- torch.utils.hooks.RemovableHandle
 
 - register_load_state_dict_post_hook(hook)[source]¶
- Register a post hook to be run after module’s - load_state_dictis called.- It should have the following signature::
- hook(module, incompatible_keys) -> None 
 - The - moduleargument is the current module that this hook is registered on, and the- incompatible_keysargument is a- NamedTupleconsisting of attributes- missing_keysand- unexpected_keys.- missing_keysis a- listof- strcontaining the missing keys and- unexpected_keysis a- listof- strcontaining the unexpected keys.- The given incompatible_keys can be modified inplace if needed. - Note that the checks performed when calling - load_state_dict()with- strict=Trueare affected by modifications the hook makes to- missing_keysor- unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when- strict=True, and clearing out both missing and unexpected keys will avoid an error.- Returns
- a handle that can be used to remove the added hook by calling - handle.remove()
- Return type
- torch.utils.hooks.RemovableHandle
 
 - register_module(name, module)[source]¶
- Alias for - add_module().
 - register_parameter(name, param)[source]¶
- Add a parameter to the module. - The parameter can be accessed as an attribute using given name. - Parameters
- name (str) – name of the parameter. The parameter can be accessed from this module using the given name 
- param (Parameter or None) – parameter to be added to the module. If - None, then operations that run on parameters, such as- cuda, are ignored. If- None, the parameter is not included in the module’s- state_dict.
 
 
 - register_state_dict_pre_hook(hook)[source]¶
- Register a pre-hook for the - state_dict()method.- These hooks will be called with arguments: - self,- prefix, and- keep_varsbefore calling- state_dicton- self. The registered hooks can be used to perform pre-processing before the- state_dictcall is made.
 - requires_grad_(requires_grad=True)[source]¶
- Change if autograd should record operations on parameters in this module. - This method sets the parameters’ - requires_gradattributes in-place.- This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training). - See Locally disabling gradient computation for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it. 
 - set_extra_state(state)[source]¶
- Set extra state contained in the loaded state_dict. - This function is called from - load_state_dict()to handle any extra state found within the state_dict. Implement this function and a corresponding- get_extra_state()for your module if you need to store extra state within its state_dict.- Parameters
- state (dict) – Extra state from the state_dict 
 
 - See - torch.Tensor.share_memory_().- Return type
- T 
 
 - state_dict(*, destination: T_destination, prefix: str = '', keep_vars: bool = False) T_destination[source]¶
- state_dict(*, prefix: str = '', keep_vars: bool = False) Dict[str, Any]
- Return a dictionary containing references to the whole state of the module. - Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to - Noneare not included.- Note - The returned object is a shallow copy. It contains references to the module’s parameters and buffers. - Warning - Currently - state_dict()also accepts positional arguments for- destination,- prefixand- keep_varsin order. However, this is being deprecated and keyword arguments will be enforced in future releases.- Warning - Please avoid the use of argument - destinationas it is not designed for end-users.- Parameters
- destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an - OrderedDictwill be created and returned. Default:- None.
- prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default: - ''.
- keep_vars (bool, optional) – by default the - Tensors returned in the state dict are detached from autograd. If it’s set to- True, detaching will not be performed. Default:- False.
 
- Returns
- a dictionary containing a whole state of the module 
- Return type
 - Example: - >>> module.state_dict().keys() ['bias', 'weight'] 
 - to(device: Optional[Union[str, device, int]] = ..., dtype: Optional[dtype] = ..., non_blocking: bool = ...) Self[source]¶
- to(dtype: dtype, non_blocking: bool = ...) Self
- to(tensor: Tensor, non_blocking: bool = ...) Self
- Move and/or cast the parameters and buffers. - This can be called as - to(device=None, dtype=None, non_blocking=False)[source]
 - to(dtype, non_blocking=False)[source]
 - to(tensor, non_blocking=False)[source]
 - to(memory_format=torch.channels_last)[source]
 - Its signature is similar to - torch.Tensor.to(), but only accepts floating point or complex- dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to- dtype(if given). The integral parameters and buffers will be moved- device, if that is given, but with dtypes unchanged. When- non_blockingis set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.- See below for examples. - Note - This method modifies the module in-place. - Parameters
- device ( - torch.device) – the desired device of the parameters and buffers in this module
- dtype ( - torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module
- tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module 
- memory_format ( - torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)
 
- Returns
- self 
- Return type
 - Examples: - >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128) 
 - to_empty(*, device, recurse=True)[source]¶
- Move the parameters and buffers to the specified device without copying storage. - Parameters
- device ( - torch.device) – The desired device of the parameters and buffers in this module.
- recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device. 
 
- Returns
- self 
- Return type
 
 - train(mode=True)[source]¶
- Set the module in training mode. - This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. - Dropout,- BatchNorm, etc.
 - type(dst_type)[source]¶
- Casts all parameters and buffers to - dst_type.- Note - This method modifies the module in-place. 
 - xpu(device=None)[source]¶
- Move all model parameters and buffers to the XPU. - This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized. - Note - This method modifies the module in-place. 
 - zero_grad(set_to_none=True)[source]¶
- Reset gradients of all model parameters. - See similar function under - torch.optim.Optimizerfor more context.- Parameters
- set_to_none (bool) – instead of setting to zero, set the grads to None. See - torch.optim.Optimizer.zero_grad()for details.