torch.bucketize¶
- torch.bucketize(input, boundaries, *, out_int32=False, right=False, out=None) Tensor¶
Returns the indices of the buckets to which each value in the
inputbelongs, where the boundaries of the buckets are set byboundaries. Return a new tensor with the same size asinput. Ifrightis False (default), then the left boundary is closed. More formally, the returned index satisfies the following rules:rightreturned index satisfies
False
boundaries[i-1] < input[m][n]...[l][x] <= boundaries[i]True
boundaries[i-1] <= input[m][n]...[l][x] < boundaries[i]- Parameters:
- Keyword Arguments:
out_int32 (bool, optional) – indicate the output data type. torch.int32 if True, torch.int64 otherwise. Default value is False, i.e. default output data type is torch.int64.
right (bool, optional) – if False, return the first suitable location that is found. If True, return the last such index. If no suitable index found, return 0 for non-numerical value (eg. nan, inf) or the size of
boundaries(one pass the last index). In other words, if False, gets the lower bound index for each value ininputfromboundaries. If True, gets the upper bound index instead. Default value is False.out (Tensor, optional) – the output tensor, must be the same size as
inputif provided.
Example:
>>> boundaries = torch.tensor([1, 3, 5, 7, 9]) >>> boundaries tensor([1, 3, 5, 7, 9]) >>> v = torch.tensor([[3, 6, 9], [3, 6, 9]]) >>> v tensor([[3, 6, 9], [3, 6, 9]]) >>> torch.bucketize(v, boundaries) tensor([[1, 3, 4], [1, 3, 4]]) >>> torch.bucketize(v, boundaries, right=True) tensor([[2, 3, 5], [2, 3, 5]])