torch.autograd.graph.Node.register_prehook¶
- abstract Node.register_prehook(fn)[source]¶
- Registers a backward pre-hook. - The hook will be called every time a gradient with respect to the Node is computed. The hook should have the following signature: - hook(grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None - The hook should not modify its argument, but it can optionally return a new gradient which will be used in place of - grad_outputs.- This function returns a handle with a method - handle.remove()that removes the hook from the module.- Note - See Backward Hooks execution for more information on how when this hook is executed, and how its execution is ordered relative to other hooks. - Example: - >>> a = torch.tensor([0., 0., 0.], requires_grad=True) >>> b = a.clone() >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node) >>> handle = b.grad_fn.register_prehook(lambda gI: (gI[0] * 2,)) >>> b.sum().backward(retain_graph=True) >>> print(a.grad) tensor([2., 2., 2.]) >>> handle.remove() >>> a.grad = None >>> b.sum().backward(retain_graph=True) >>> print(a.grad) tensor([1., 1., 1.]) - Return type:
- RemovableHandle