ChainedScheduler¶
- class torch.optim.lr_scheduler.ChainedScheduler(schedulers)[source]¶
- Chains list of learning rate schedulers. It takes a list of chainable learning rate schedulers and performs consecutive step() functions belonging to them by just one call. - Parameters:
- schedulers (list) – List of chained schedulers. 
 - Example - >>> # Assuming optimizer uses lr = 1. for all groups >>> # lr = 0.09 if epoch == 0 >>> # lr = 0.081 if epoch == 1 >>> # lr = 0.729 if epoch == 2 >>> # lr = 0.6561 if epoch == 3 >>> # lr = 0.59049 if epoch >= 4 >>> scheduler1 = ConstantLR(self.opt, factor=0.1, total_iters=2) >>> scheduler2 = ExponentialLR(self.opt, gamma=0.9) >>> scheduler = ChainedScheduler([scheduler1, scheduler2]) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() - get_last_lr()¶
- Return last computed learning rate by current scheduler. 
 - load_state_dict(state_dict)[source]¶
- Loads the schedulers state. - Parameters:
- state_dict (dict) – scheduler state. Should be an object returned from a call to - state_dict().
 
 - print_lr(is_verbose, group, lr, epoch=None)¶
- Display the current learning rate.