torch.empty_strided¶
- torch.empty_strided(size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) Tensor¶
Creates a tensor with the specified
sizeandstrideand filled with undefined data.Warning
If the constructed tensor is “overlapped” (with multiple indices referring to the same element in memory) its behavior is undefined.
- Parameters:
size (tuple of python:int) – the shape of the output tensor
stride (tuple of python:int) – the strides of the output tensor
- Keyword Arguments:
dtype (
torch.dtype, optional) – the desired data type of returned tensor. Default: ifNone, uses a global default (seetorch.set_default_tensor_type()).layout (
torch.layout, optional) – the desired layout of returned Tensor. Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_tensor_type()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False.
Example:
>>> a = torch.empty_strided((2, 3), (1, 2)) >>> a tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07], [0.0000e+00, 0.0000e+00, 3.0705e-41]]) >>> a.stride() (1, 2) >>> a.size() torch.Size([2, 3])