Source code for torch.distributions.half_cauchy
import math
import torch
from torch._six import inf
from torch.distributions import constraints
from torch.distributions.transforms import AbsTransform
from torch.distributions.cauchy import Cauchy
from torch.distributions.transformed_distribution import TransformedDistribution
__all__ = ['HalfCauchy']
[docs]class HalfCauchy(TransformedDistribution):
    r"""
    Creates a half-Cauchy distribution parameterized by `scale` where::
        X ~ Cauchy(0, scale)
        Y = |X| ~ HalfCauchy(scale)
    Example::
        >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
        >>> m = HalfCauchy(torch.tensor([1.0]))
        >>> m.sample()  # half-cauchy distributed with scale=1
        tensor([ 2.3214])
    Args:
        scale (float or Tensor): scale of the full Cauchy distribution
    """
    arg_constraints = {'scale': constraints.positive}
    support = constraints.nonnegative
    has_rsample = True
    def __init__(self, scale, validate_args=None):
        base_dist = Cauchy(0, scale, validate_args=False)
        super(HalfCauchy, self).__init__(base_dist, AbsTransform(),
                                         validate_args=validate_args)
[docs]    def expand(self, batch_shape, _instance=None):
        new = self._get_checked_instance(HalfCauchy, _instance)
        return super(HalfCauchy, self).expand(batch_shape, _instance=new)
    @property
    def scale(self):
        return self.base_dist.scale
    @property
    def mean(self):
        return torch.full(self._extended_shape(), math.inf, dtype=self.scale.dtype, device=self.scale.device)
    @property
    def mode(self):
        return torch.zeros_like(self.scale)
    @property
    def variance(self):
        return self.base_dist.variance
[docs]    def log_prob(self, value):
        if self._validate_args:
            self._validate_sample(value)
        value = torch.as_tensor(value, dtype=self.base_dist.scale.dtype,
                                device=self.base_dist.scale.device)
        log_prob = self.base_dist.log_prob(value) + math.log(2)
        log_prob = torch.where(value >= 0, log_prob, -inf)
        return log_prob
[docs]    def cdf(self, value):
        if self._validate_args:
            self._validate_sample(value)
        return 2 * self.base_dist.cdf(value) - 1