torch.addmm¶
-
torch.addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) → Tensor¶ Performs a matrix multiplication of the matrices
mat1andmat2. The matrixinputis added to the final result.If
mat1is a tensor,mat2is a tensor, theninputmust be broadcastable with a tensor andoutwill be a tensor.alphaandbetaare scaling factors on matrix-vector product betweenmat1andmat2and the added matrixinputrespectively.If
betais 0, theninputwill be ignored, and nan and inf in it will not be propagated.For inputs of type FloatTensor or DoubleTensor, arguments
betaandalphamust be real numbers, otherwise they should be integers.This operator supports TensorFloat32.
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
- Parameters
- Keyword Arguments
beta (Number, optional) – multiplier for
input()alpha (Number, optional) – multiplier for ()
out (Tensor, optional) – the output tensor.
Example:
>>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]])