torch.bincount¶
-
torch.bincount(input, weights=None, minlength=0) → Tensor¶ Count the frequency of each value in an array of non-negative ints.
The number of bins (size 1) is one larger than the largest value in
inputunlessinputis empty, in which case the result is a tensor of size 0. Ifminlengthis specified, the number of bins is at leastminlengthand ifinputis empty, then the result is tensor of sizeminlengthfilled with zeros. Ifnis the value at positioni,out[n] += weights[i]ifweightsis specified elseout[n] += 1.Note
This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information.
- Parameters
- Returns
a tensor of shape
Size([max(input) + 1])ifinputis non-empty, elseSize(0)- Return type
output (Tensor)
Example:
>>> input = torch.randint(0, 8, (5,), dtype=torch.int64) >>> weights = torch.linspace(0, 1, steps=5) >>> input, weights (tensor([4, 3, 6, 3, 4]), tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) >>> torch.bincount(input) tensor([0, 0, 0, 2, 2, 0, 1]) >>> input.bincount(weights) tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])