Source code for torch.optim.rprop
import torch
from . import _functional as F
from .optimizer import Optimizer
[docs]class Rprop(Optimizer):
    r"""Implements the resilient backpropagation algorithm.
    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta)
                \text{ (objective)},                                                             \\
            &\hspace{13mm}      \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min}
                \text{ (step sizes)}                                                             \\
            &\textbf{initialize} :   g^0_{prev} \leftarrow 0,
                \: \eta_0 \leftarrow \text{lr (learning rate)}                                   \\
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \textbf{for} \text{  } i = 0, 1, \ldots, d-1 \: \mathbf{do}            \\
            &\hspace{10mm}  \textbf{if} \:   g^i_{prev} g^i_t  > 0                               \\
            &\hspace{15mm}  \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+},
                \Gamma_{max})                                                                    \\
            &\hspace{10mm}  \textbf{else if}  \:  g^i_{prev} g^i_t < 0                           \\
            &\hspace{15mm}  \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-},
                \Gamma_{min})                                                                    \\
            &\hspace{10mm}  \textbf{else}  \:                                                    \\
            &\hspace{15mm}  \eta^i_t \leftarrow \eta^i_{t-1}                                     \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t)             \\
            &\hspace{5mm}g_{prev} \leftarrow  g_t                                                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}
    For further details regarding the algorithm we refer to the paper
    `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
    <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_.
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-2)
        etas (Tuple[float, float], optional): pair of (etaminus, etaplis), that
            are multiplicative increase and decrease factors
            (default: (0.5, 1.2))
        step_sizes (Tuple[float, float], optional): a pair of minimal and
            maximal allowed step sizes (default: (1e-6, 50))
    """
    def __init__(self, params, lr=1e-2, etas=(0.5, 1.2), step_sizes=(1e-6, 50)):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 < etas[0] < 1.0 < etas[1]:
            raise ValueError("Invalid eta values: {}, {}".format(etas[0], etas[1]))
        defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes)
        super(Rprop, self).__init__(params, defaults)
[docs]    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.
        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()
        for group in self.param_groups:
            params = []
            grads = []
            prevs = []
            step_sizes = []
            for p in group['params']:
                if p.grad is None:
                    continue
                params.append(p)
                grad = p.grad
                if grad.is_sparse:
                    raise RuntimeError('Rprop does not support sparse gradients')
                grads.append(grad)
                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['prev'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['step_size'] = grad.new().resize_as_(grad).fill_(group['lr'])
                prevs.append(state['prev'])
                step_sizes.append(state['step_size'])
                etaminus, etaplus = group['etas']
                step_size_min, step_size_max = group['step_sizes']
                state['step'] += 1
            F.rprop(params,
                    grads,
                    prevs,
                    step_sizes,
                    step_size_min=step_size_min,
                    step_size_max=step_size_max,
                    etaminus=etaminus,
                    etaplus=etaplus)
        return loss