torch.fft.fftn¶
-
torch.fft.fftn(input, s=None, dim=None, norm=None, *, out=None) → Tensor¶ Computes the N dimensional discrete Fourier transform of
input.Note
The Fourier domain representation of any real signal satisfies the Hermitian property:
X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n]). This function always returns all positive and negative frequency terms even though, for real inputs, half of these values are redundant.rfftn()returns the more compact one-sided representation where only the positive frequencies of the last dimension are returned.- Parameters
input (Tensor) – the input tensor
s (Tuple[int], optional) – Signal size in the transformed dimensions. If given, each dimension
dim[i]will either be zero-padded or trimmed to the lengths[i]before computing the FFT. If a length-1is specified, no padding is done in that dimension. Default:s = [input.size(d) for d in dim]dim (Tuple[int], optional) – Dimensions to be transformed. Default: all dimensions, or the last
len(s)dimensions ifsis given.norm (str, optional) –
Normalization mode. For the forward transform (
fftn()), these correspond to:"forward"- normalize by1/n"backward"- no normalization"ortho"- normalize by1/sqrt(n)(making the FFT orthonormal)
Where
n = prod(s)is the logical FFT size. Calling the backward transform (ifftn()) with the same normalization mode will apply an overall normalization of1/nbetween the two transforms. This is required to makeifftn()the exact inverse.Default is
"backward"(no normalization).
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example
>>> x = torch.rand(10, 10, dtype=torch.complex64) >>> fftn = torch.fft.fftn(x)
The discrete Fourier transform is separable, so
fftn()here is equivalent to two one-dimensionalfft()calls:>>> two_ffts = torch.fft.fft(torch.fft.fft(x, dim=0), dim=1) >>> torch.testing.assert_close(fftn, two_ffts, check_stride=False)