torch.min¶
-
torch.min(input) → Tensor¶ Returns the minimum value of all elements in the
inputtensor.Warning
This function produces deterministic (sub)gradients unlike
min(dim=0)- Parameters
input (Tensor) – the input tensor.
Example:
>>> a = torch.randn(1, 3) >>> a tensor([[ 0.6750, 1.0857, 1.7197]]) >>> torch.min(a) tensor(0.6750)
-
torch.min(input, dim, keepdim=False, *, out=None)
Returns a namedtuple
(values, indices)wherevaluesis the minimum value of each row of theinputtensor in the given dimensiondim. Andindicesis the index location of each minimum value found (argmin).If
keepdimisTrue, the output tensors are of the same size asinputexcept in the dimensiondimwhere they are of size 1. Otherwise,dimis squeezed (seetorch.squeeze()), resulting in the output tensors having 1 fewer dimension thaninput.Note
If there are multiple minimal values in a reduced row then the indices of the first minimal value are returned.
- Parameters
- Keyword Arguments
out (tuple, optional) – the tuple of two output tensors (min, min_indices)
Example:
>>> a = torch.randn(4, 4) >>> a tensor([[-0.6248, 1.1334, -1.1899, -0.2803], [-1.4644, -0.2635, -0.3651, 0.6134], [ 0.2457, 0.0384, 1.0128, 0.7015], [-0.1153, 2.9849, 2.1458, 0.5788]]) >>> torch.min(a, 1) torch.return_types.min(values=tensor([-1.1899, -1.4644, 0.0384, -0.1153]), indices=tensor([2, 0, 1, 0]))
-
torch.min(input, other, *, out=None) → Tensor
See
torch.minimum().