torch.fft.ifft2¶
- 
torch.fft.ifft2(input, s=None, dim=(- 2, - 1), norm=None, *, out=None) → Tensor¶ Computes the 2 dimensional inverse discrete Fourier transform of
input. Equivalent toifftn()but IFFTs only the last two dimensions by default.- Parameters
 input (Tensor) – the input tensor
s (Tuple[int], optional) – Signal size in the transformed dimensions. If given, each dimension
dim[i]will either be zero-padded or trimmed to the lengths[i]before computing the IFFT. If a length-1is specified, no padding is done in that dimension. Default:s = [input.size(d) for d in dim]dim (Tuple[int], optional) – Dimensions to be transformed. Default: last two dimensions.
norm (str, optional) –
Normalization mode. For the backward transform (
ifft2()), these correspond to:"forward"- no normalization"backward"- normalize by1/n"ortho"- normalize by1/sqrt(n)(making the IFFT orthonormal)
Where
n = prod(s)is the logical IFFT size. Calling the forward transform (fft2()) with the same normalization mode will apply an overall normalization of1/nbetween the two transforms. This is required to makeifft2()the exact inverse.Default is
"backward"(normalize by1/n).
- Keyword Arguments
 out (Tensor, optional) – the output tensor.
Example
>>> x = torch.rand(10, 10, dtype=torch.complex64) >>> ifft2 = torch.fft.ifft2(x)
The discrete Fourier transform is separable, so
ifft2()here is equivalent to two one-dimensionalifft()calls:>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1) >>> torch.testing.assert_close(ifft2, two_iffts, check_stride=False)