torch.empty¶
- 
torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) → Tensor¶ Returns a tensor filled with uninitialized data. The shape of the tensor is defined by the variable argument
size.- Parameters
 size (int...) – a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple.
- Keyword Arguments
 out (Tensor, optional) – the output tensor.
dtype (
torch.dtype, optional) – the desired data type of returned tensor. Default: ifNone, uses a global default (seetorch.set_default_tensor_type()).layout (
torch.layout, optional) – the desired layout of returned Tensor. Default:torch.strided.device (
torch.device, optional) – the desired device of returned tensor. Default: ifNone, uses the current device for the default tensor type (seetorch.set_default_tensor_type()).devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default:
False.pin_memory (bool, optional) – If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default:
False.memory_format (
torch.memory_format, optional) – the desired memory format of returned Tensor. Default:torch.contiguous_format.
Example:
>>> a=torch.empty((2,3), dtype=torch.int32, device = 'cuda') >>> torch.empty_like(a) tensor([[0, 0, 0], [0, 0, 0]], device='cuda:0', dtype=torch.int32)