torch.cholesky_inverse¶
-
torch.cholesky_inverse(input, upper=False, *, out=None) → Tensor¶ Computes the inverse of a symmetric positive-definite matrix using its Cholesky factor : returns matrix
inv. The inverse is computed using LAPACK routinesdpotriandspotri(and the corresponding MAGMA routines).If
upperisFalse, is lower triangular such that the returned tensor isIf
upperisTrueor not provided, is upper triangular such that the returned tensor is- Parameters
- Keyword Arguments
out (Tensor, optional) – the output tensor for inv
Example:
>>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) + 1e-05 * torch.eye(3) # make symmetric positive definite >>> u = torch.cholesky(a) >>> a tensor([[ 0.9935, -0.6353, 1.5806], [ -0.6353, 0.8769, -1.7183], [ 1.5806, -1.7183, 10.6618]]) >>> torch.cholesky_inverse(u) tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]]) >>> a.inverse() tensor([[ 1.9314, 1.2251, -0.0889], [ 1.2251, 2.4439, 0.2122], [-0.0889, 0.2122, 0.1412]])