torch.arange¶
- 
torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor¶
- Returns a 1-D tensor of size with values from the interval - [start, end)taken with common difference- stepbeginning from start.- Note that non-integer - stepis subject to floating point rounding errors when comparing against- end; to avoid inconsistency, we advise adding a small epsilon to- endin such cases.- Parameters
- start (Number) – the starting value for the set of points. Default: - 0.
- end (Number) – the ending value for the set of points 
- step (Number) – the gap between each pair of adjacent points. Default: - 1.
 
- Keyword Arguments
- out (Tensor, optional) – the output tensor. 
- dtype ( - torch.dtype, optional) – the desired data type of returned tensor. Default: if- None, uses a global default (see- torch.set_default_tensor_type()). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see- get_default_dtype(). Otherwise, the dtype is inferred to be torch.int64.
- layout ( - torch.layout, optional) – the desired layout of returned Tensor. Default:- torch.strided.
- device ( - torch.device, optional) – the desired device of returned tensor. Default: if- None, uses the current device for the default tensor type (see- torch.set_default_tensor_type()).- devicewill be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
- requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: - False.
 
 - Example: - >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000])