Source code for torch.optim.adamax
import torch
from . import _functional as F
from .optimizer import Optimizer
[docs]class Adamax(Optimizer):
    r"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \beta_1, \beta_2
                \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)},
                \: \lambda \text{ (weight decay)},                                                \\
            &\hspace{13mm}    \epsilon \text{ (epsilon)}                                          \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                u_0 \leftarrow 0 \text{ ( infinity norm)}                                 \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{5mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm}if \: \lambda \neq 0                                                    \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda  \theta_{t-1}                            \\
            &\hspace{5mm}m_t      \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t               \\
            &\hspace{5mm}u_t      \leftarrow   \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon)   \\
            &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}
    For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 2e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
    .. _Adam\: A Method for Stochastic Optimization:
        https://arxiv.org/abs/1412.6980
    """
    def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
        super(Adamax, self).__init__(params, defaults)
[docs]    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.
        Args:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()
        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_infs = []
            state_steps = []
            beta1, beta2 = group['betas']
            eps = group['eps']
            lr = group['lr']
            weight_decay = group['weight_decay']
            for p in group['params']:
                if p.grad is None:
                    continue
                params_with_grad.append(p)
                if p.grad.is_sparse:
                    raise RuntimeError('Adamax does not support sparse gradients')
                grads.append(p.grad)
                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    state['step'] = 0
                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                    state['exp_inf'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                exp_avgs.append(state['exp_avg'])
                exp_infs.append(state['exp_inf'])
                state['step'] += 1
                state_steps.append(state['step'])
            F.adamax(params_with_grad,
                     grads,
                     exp_avgs,
                     exp_infs,
                     state_steps,
                     eps=eps,
                     beta1=beta1,
                     beta2=beta2,
                     lr=lr,
                     weight_decay=weight_decay)
        return loss