Function torch::stable::from_blob(void *, torch::headeronly::IntHeaderOnlyArrayRef, torch::headeronly::IntHeaderOnlyArrayRef, torch::stable::Device, torch::headeronly::ScalarType, DeleterFnPtr, int64_t, torch::headeronly::Layout)#
Defined in File ops.h
Function Documentation#
-
inline torch::stable::Tensor torch::stable::from_blob(void *data, torch::headeronly::IntHeaderOnlyArrayRef sizes, torch::headeronly::IntHeaderOnlyArrayRef strides, torch::stable::Device device, torch::headeronly::ScalarType dtype, DeleterFnPtr deleter, int64_t storage_offset = 0, torch::headeronly::Layout layout = torch::headeronly::Layout::Strided)#
Creates a tensor from an existing data blob with a custom deleter.
This is the same as the from_blob function above, but allows specifying a custom deleter function that will be called when the tensor’s storage is deallocated. Minimum compatible version: PyTorch 2.11.
- Parameters:
data – Pointer to the data buffer.
sizes – The size of each dimension of the tensor.
strides – The stride for each dimension.
device – The device where the data resides.
dtype – The scalar type of the data.
deleter – Function to call when the tensor is deallocated. May be nullptr if no cleanup is needed.
storage_offset – The offset into the data buffer. Defaults to 0.
layout – The memory layout. Defaults to Strided.
- Returns:
A tensor backed by the provided data.