sparsify¶
- torchao.sparsity.sparsify_(model: Module, config: AOBaseConfig, filter_fn: Optional[Callable[[Module, str], bool]] = None) Module [source]¶
Convert the weight of linear modules in the model with apply_tensor_subclass. This function is essentially the same as quantize, put for sparsity subclasses.
- Currently, we support three options for sparsity:
semi-structured (2:4) sparsity with semi_sparse_weight
int8 dynamic quantization + 2:4 sparsity with layout=SemiSparseLayout
int4 weight-only quantization + 2:4 sparsity with layout=SparseMarlinLayout
- Parameters:
model (torch.nn.Module) – input model
config (AOBaseConfig) – a workflow configuration object
filter_fn (Optional[Callable[[torch.nn.Module, str], bool]]) – function that takes a nn.Module instance and fully qualified name of the module, returns True if we want to apply the specified workflow to this module.
Example:
import torch import torch.nn as nn from torchao.sparsity import sparsify_ def filter_fn(module: nn.Module, fqn: str) -> bool: return isinstance(module, nn.Linear) m = nn.Sequential(nn.Linear(32, 1024), nn.Linear(1024, 32)) # for 2:4 sparsity from torchao.sparse_api import semi_sparse_weight m = sparsify_(m, semi_sparse_weight(), filter_fn) # for int8 dynamic quantization + 2:4 sparsity from torchao.dtypes import SemiSparseLayout m = quantize_(m, int8_dynamic_activation_int8_weight(layout=SemiSparseLayout), filter_fn)