Rate this Page

IntXQuantizationAwareTrainingConfig#

class torchao.quantization.qat.IntXQuantizationAwareTrainingConfig(activation_config: Optional[FakeQuantizeConfigBase] = None, weight_config: Optional[FakeQuantizeConfigBase] = None)[source][source]#

(Deprecated) Please use QATConfig instead.

Config for applying fake quantization to a torch.nn.Module. to be used with quantize_().

Example usage:

from torchao.quantization import quantize_
from torchao.quantization.qat import IntxFakeQuantizeConfig
activation_config = IntxFakeQuantizeConfig(
    torch.int8, "per_token", is_symmetric=False,
)
weight_config = IntxFakeQuantizeConfig(
    torch.int4, group_size=32, is_symmetric=True,
)
quantize_(
    model,
    IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
)

Note: If the config is applied on a module that is not torch.nn.Linear or torch.nn.Embedding, or it is applied on torch.nn.Embedding with an activation config, then we will raise ValueError as these are not supported.