Welcome to the torchao Documentation#

Created On: Jan 29, 2026 | Last Updated On: Jan 29, 2026

PyTorch-Native Training-to-Serving Model Optimization#

  • Pre-train Llama-3.1-70B 1.5x faster with float8 training

  • Recover 67% of quantized accuracy degradation on Gemma3-4B with QAT

  • Quantize Llama-3-8B to int4 for 1.89x faster inference with 58% less memory

torchao is a library for custom data types and optimizations. Quantize and sparsify weights, gradients, optimizers, and activations for inference and training using native PyTorch. Please checkout torchao README for an overall introduction to the library and recent highlight and updates.

Quick Start#

First, install TorchAO. We recommend installing the latest stable version:

pip install torchao

Quantize your model weights to int4!

import torch
from torchao.quantization import Int4WeightOnlyConfig, quantize_
if torch.cuda.is_available():
  # quantize on CUDA
  quantize_(model, Int4WeightOnlyConfig(group_size=32, int4_packing_format="tile_packed_to_4d", int4_choose_qparams_algorithm="hqq"))
elif torch.xpu.is_available():
  # quantize on XPU
  quantize_(model, Int4WeightOnlyConfig(group_size=32, int4_packing_format="plain_int32"))

See our first quantization example for more details.

Installation#

To install the latest stable version:

pip install torchao

Other installation options:

# Nightly
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu128

# Different CUDA versions
pip install torchao --index-url https://download.pytorch.org/whl/cu126  # CUDA 12.6
pip install torchao --index-url https://download.pytorch.org/whl/cu129  # CUDA 12.9
pip install torchao --index-url https://download.pytorch.org/whl/xpu    # XPU
pip install torchao --index-url https://download.pytorch.org/whl/cpu    # CPU only

# For developers
# Note: the --no-build-isolation flag is required.
USE_CUDA=1 pip install -e . --no-build-isolation
USE_XPU=1 pip install -e . --no-build-isolation
USE_CPP=0 pip install -e . --no-build-isolation

Please see the torchao compatibility table for version requirements for dependencies.

Workflows

API Reference

Eager Quantization Tutorials

Developer Notes

PT2E Quantization Tutorials