Source code for torchao.quantization.quant_api
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Quantization APIs
Generally these APIs can be applied directly to any model
with Linear modules to obtain quantized linear ops. The intended
usage involves applying torch.compile to the model afterwards
both because primitives were designed based on the fusions that
come along with it and because that is how we access the intended quantized
and mixed GEMM kernels
"""
import logging
import types
import warnings
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.utils.parametrize as parametrize
import torchao
from torchao.dtypes import (
AffineQuantizedTensor,
CutlassInt4PackedLayout,
Float8Layout,
Int4CPULayout,
MarlinQQQLayout,
MarlinSparseLayout,
PlainLayout,
SemiSparseLayout,
TensorCoreTiledLayout,
UintxLayout,
to_affine_quantized_floatx,
to_affine_quantized_floatx_static,
to_affine_quantized_intx,
to_marlinqqq_quantized_intx,
)
from torchao.float8.float8_linear import Float8Linear
from torchao.float8.inference import Float8MMConfig
from torchao.quantization.linear_activation_weight_observed_tensor import (
LinearActivationWeightObservedTensor,
)
from torchao.quantization.observer import AffineQuantizedObserverBase, get_block_size
from torchao.quantization.weight_tensor_linear_activation_quantization import (
to_weight_tensor_with_linear_activation_quantization_metadata,
)
from torchao.utils import (
TORCH_VERSION_AT_LEAST_2_4,
TORCH_VERSION_AT_LEAST_2_5,
TORCH_VERSION_AT_LEAST_2_6,
is_MI300,
is_sm_at_least_89,
is_sm_at_least_90,
)
from .autoquant import AutoQuantizableLinearWeight, autoquant
from .GPTQ import (
Int4WeightOnlyGPTQQuantizer,
Int4WeightOnlyQuantizer,
Int8DynActInt4WeightGPTQQuantizer,
Int8DynActInt4WeightQuantizer,
)
from .granularity import (
PerRow,
PerTensor,
)
from .linear_activation_quantized_tensor import (
LinearActivationQuantizedTensor,
to_linear_activation_quantized,
)
from .qat import (
intx_quantization_aware_training,
)
from .quant_primitives import (
MappingType,
ZeroPointDomain,
)
from .subclass import (
Int4WeightOnlyQuantizedLinearWeight,
Int8DynamicallyQuantizedLinearWeight,
Int8WeightOnlyQuantizedLinearWeight,
QuantizedLinearWeightBase,
)
from .unified import Quantizer, TwoStepQuantizer
from .utils import _get_per_token_block_size
logger = logging.getLogger(__name__)
__all__ = [
"swap_conv2d_1x1_to_linear",
"Quantizer",
"TwoStepQuantizer",
"Int4WeightOnlyGPTQQuantizer",
"Int4WeightOnlyQuantizer",
"autoquant",
"_get_subclass_inserter",
"quantize_",
"int8_dynamic_activation_int4_weight",
"int8_dynamic_activation_int8_weight",
"int8_dynamic_activation_int8_semi_sparse_weight",
"int4_weight_only",
"int8_weight_only",
"intx_quantization_aware_training",
"float8_weight_only",
"uintx_weight_only",
"fpx_weight_only",
"gemlite_uintx_weight_only",
"float8_dynamic_activation_float8_weight",
"float8_static_activation_float8_weight",
"Int8DynActInt4WeightQuantizer",
"Int8DynActInt4WeightGPTQQuantizer",
]
# update according to the support matrix
LAYOUT_TO_ZERO_POINT_DOMAIN = {
TensorCoreTiledLayout: [ZeroPointDomain.FLOAT],
MarlinSparseLayout: [ZeroPointDomain.INT],
Int4CPULayout: [ZeroPointDomain.FLOAT],
}
LAYOUT_TO_PRESERVE_ZEROS = {
TensorCoreTiledLayout: False,
MarlinSparseLayout: True,
Int4CPULayout: False,
}
######
# TO BE DEPRECATED START
######
def _in_features_greater_than_16(mod, *args):
return hasattr(mod, "in_features") and mod.in_features > 16
def change_linear_weights_to_int8_dqtensors(model, filter_fn=None, **kwargs):
"""
Converts all linear weight tensors to the `Int8DynamicallyQuantizedLinearWeight`
Tensor subclass, effectively applying the same form of quantization
as apply_dynamic_quant while not modifying the linear modules.
"""
if TORCH_VERSION_AT_LEAST_2_4:
raise ImportError(
"This API is deprecated for pytorch 2.4+, please checkout quantization/README.md for most up to date APIs"
)
if filter_fn is None:
filter_fn = lambda *args: _is_linear(*args) and _in_features_greater_than_16(
*args
)
_replace_with_custom_fn_if_matches_filter(
model,
_get_subclass_inserter(
Int8DynamicallyQuantizedLinearWeight, enable_parametrization=False, **kwargs
),
filter_fn,
)
def change_linear_weights_to_int8_woqtensors(model, filter_fn=None, **kwargs):
"""
Converts all linear weight tensors to the
`Int8WeightOnlyQuantizedLinearWeight` tensor subclass,
effectively applying the same form of quantization
as apply_weight_only_int8_quant while not modifying the linear modules.
"""
if TORCH_VERSION_AT_LEAST_2_4:
raise ImportError(
"This API is deprecated for pytorch 2.4+, please checkout quantization/README.md for most up to date APIs"
)
_replace_with_custom_fn_if_matches_filter(
model,
_get_subclass_inserter(
Int8WeightOnlyQuantizedLinearWeight, enable_parametrization=False, **kwargs
),
_is_linear if filter_fn is None else filter_fn,
)
def change_linear_weights_to_int4_woqtensors(
model, groupsize=128, inner_k_tiles=8, filter_fn=None
):
"""
Converts all linear weight tensors to the
`Int4WeightOnlyQuantizedLinearWeight` tensor subclass,
effectively applying the same form of quantization
as apply_dynamic_quant while not modifying the linear modules.
Args:
`groupsize`: parameter for quantization, controls the granularity of quantization, smaller
size is more fine grained, choices are [256, 128, 64, 32]
`inner_k_tiles`: parameter for int4 mm kernel, choices are [8, 4, 2]
"""
if TORCH_VERSION_AT_LEAST_2_4:
raise ImportError(
"This API is deprecated for pytorch 2.4+, please checkout quantization/README.md for most up to date APIs"
)
if filter_fn is None:
filter_fn = _is_linear
_replace_with_custom_fn_if_matches_filter(
model,
_get_subclass_inserter(
Int4WeightOnlyQuantizedLinearWeight,
enable_parametrization=False,
groupsize=groupsize,
inner_k_tiles=inner_k_tiles,
),
filter_fn,
)
########
# TO BE DEPRECATED END
########
def _replace_with_custom_fn_if_matches_filter(
model,
replacement_fn,
filter_fn,
cur_fqn="",
device=None,
) -> None:
"""
Recursively replaces each child module in `model` with the result of `replacement_fn(child)`
if `filter_fn(child)` returns `True`.
Args:
model (torch.nn.Module): The model containing modules to be replaced.
replacement_fn (Callable[[torch.nn.Module], torch.nn.Module]): The function to replace matching modules.
filter_fn (Callable[[torch.nn.Module], bool]): The filter function to determine which modules to replace.
cur_fqn (str, optional): The current fully qualified name of the module being processed. Defaults to "".
device (device, optional): Device to move the model to before applying `filter_fn`. Defaults to None.
Returns:
None
"""
if isinstance(model, Float8Linear):
with torch.device("meta"):
new_module = nn.Linear(model.in_features, model.out_features)
new_module.weight = model.weight
new_module.bias = model.bias
model = new_module
if filter_fn(model, cur_fqn[:-1]):
if device is not None:
model.to(device=device) # move to device before quantization
model = replacement_fn(model)
return model
else:
for name, child in model.named_children():
new_child = _replace_with_custom_fn_if_matches_filter(
child, replacement_fn, filter_fn, f"{cur_fqn}{name}.", device
)
if new_child is not child:
setattr(model, name, new_child)
if device is not None:
model.to(device=device) # move parent module to device
return model
def _is_linear(mod, *args):
# avoid circular dependencies
from torchao.quantization.qat.affine_fake_quantized_tensor import (
AffineFakeQuantizedTensor,
)
# adding weight tensor subclass isinstance check to make sure the weight is only quantized once
# when it is shared by multiple linear modules
return (
isinstance(mod, torch.nn.Linear)
and hasattr(mod, "weight")
and not isinstance(mod.weight, QuantizedLinearWeightBase)
and not isinstance(mod.weight, AutoQuantizableLinearWeight)
and not isinstance(mod.weight, AffineQuantizedTensor)
and not isinstance(mod.weight, LinearActivationQuantizedTensor)
and not isinstance(mod.weight, AffineFakeQuantizedTensor)
and not isinstance(mod, nn.modules.linear.NonDynamicallyQuantizableLinear)
)
def _get_subclass_inserter(cls, enable_parametrization=False, **kwargs):
"""
Returns a function which inserts the given subclass into all linear modules
in the model. The inserted module will have its weight set to the result of
`cls(mod.weight, **kwargs)`. If parametrization is enabled then this will be done using
torch.nn.utils.parametrize instead of directly setting the attribute on the module.
Args:
cls (torch.Tensor): The class to insert as a child module.
kwargs (Any): Any additional arguments for the constructor.
"""
constructor = kwargs.pop("constructor", "subclass_constructor")
from_float = kwargs.pop("method", "from_float")
def insert_subclass(lin):
if enable_parametrization:
lin.weight = torch.nn.Parameter(
cls.from_float(lin.weight, **kwargs), requires_grad=False
)
_, args = lin.weight.__tensor_flatten__()
parametrize.register_parametrization(
lin, "weight", getattr(cls, constructor)(*args)
)
else:
lin.weight = torch.nn.Parameter(
# cls.from_float(...)
getattr(cls, from_float)(lin.weight, **kwargs),
requires_grad=False,
)
return lin
return insert_subclass
def swap_conv2d_1x1_to_linear(model, filter_fn=None):
"""
Changes all conv2d 1x1 modules to equivalent linear modules so that they can then be quantized.
"""
class PermuteSandwich(torch.nn.Module):
def __init__(self, mod):
super().__init__()
self.mod = mod
def forward(self, *args):
return self.mod(args[0].permute(0, 2, 3, 1)).permute(-0, 3, 1, 2)
def replace_conv2d_1x1(conv):
assert conv.kernel_size == (1, 1)
lin = torch.nn.Linear(
conv.in_channels, conv.out_channels, bias=(conv.bias is None)
)
lin.weight = torch.nn.Parameter(conv.weight.squeeze(-1, -2))
lin.bias = conv.bias
return PermuteSandwich(lin)
if filter_fn is None:
filter_fn = lambda mod, *args: isinstance(
mod, torch.nn.Conv2d
) and mod.kernel_size == (1, 1)
_replace_with_custom_fn_if_matches_filter(
model, replace_conv2d_1x1, filter_fn=filter_fn
)
def insert_observers_(
model: nn.Module,
input_observer: Optional[AffineQuantizedObserverBase],
weight_observer: Optional[AffineQuantizedObserverBase],
*,
filter_fn: Optional[Callable[[torch.nn.Module, str], bool]] = None,
):
"""
Converts the weight of a linear module to a LinearActivationWeightObservedTensor.
This function wraps the weight of the given linear module with a LinearActivationWeightObservedTensor,
which enables observation of both input and weight tensors during forward passes.
The wrapped weight is then re-wrapped as a nn.Parameter to maintain compatibility
with PyTorch's module system.
Example::
```
import torch
import torch.nn as nn
from torchao.quantization.linear_observer_tensor import insert_observers_
from torchao.quantization.observer import (
AffineQuantizedMinMaxObserver,
PerTensor,
MappingType
)
# Create observers
input_observer = AffineQuantizedMinMaxObserver(
MappingType.SYMMETRIC,
torch.float8_e4m3fn,
granularity_type=PerTensor(),
eps=torch.finfo(torch.float32).eps,
scale_dtype=torch.float,
zero_point_dtype=torch.int,
zero_point_domain=None,
)
# Create a linear module
linear_module = nn.Linear(10, 20)
# Convert the linear module's weight to an observed tensor
insert_observers_(linear_module, input_observer, weight_observer=None)
# The linear_module can now be used as usual, with observers calculating statistics
output = linear_module(torch.randn(10, 10))
# Get the scale and zero point of the input observer
scale, zero_point = linear_module.weight.input_observer.calculate_qparams()
```
Args:
model (nn.Module): The nn.Module to convert.
input_observer (Optional[AffineQuantizedObserverBase]): Observer for input tensor.
weight_observer (Optional[AffineQuantizedObserverBase]): Observer for weight tensor.
filter_fn (Optional[Callable[[torch.nn.Module, str], bool]]): Filter function to select which modules to convert.
If not provided, all linear modules will be converted. This function should take a module and its fully qualified name.
Returns:
nn.Linear: The modified linear module with its weight wrapped in a LinearActivationWeightObservedTensor.
"""
def convert_to_linear_observer(linear_module: nn.Linear):
# Wrap the weight with LinearActivationWeightObservedTensor and then with nn.Parameter
linear_module.weight = nn.Parameter(
LinearActivationWeightObservedTensor.from_float(
linear_module.weight,
input_observer=input_observer,
weight_observer=weight_observer,
),
requires_grad=linear_module.weight.requires_grad,
)
return linear_module
_replace_with_custom_fn_if_matches_filter(
model,
convert_to_linear_observer,
_is_linear if filter_fn is None else filter_fn,
)
def _quantization_type(weight: torch.Tensor):
if isinstance(weight, AffineQuantizedTensor):
return f"{weight.__class__.__name__}({weight._quantization_type()})"
if isinstance(weight, LinearActivationQuantizedTensor):
return f"{weight.__class__.__name__}(activation={weight.input_quant_func}, weight={_quantization_type(weight.original_weight_tensor)})"
if type(weight) is torch.Tensor:
return "not quantized"
return "not recognized"
def _linear_extra_repr(self):
return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight={_quantization_type(self.weight)}"
def _get_linear_subclass_inserter(constructor, *, allow_requires_grad=False, **kwargs):
"""Helper function to apply the constructor that quantizes the weight Tensor (with additional kwargs)
to the weight of linear module
"""
def insert_subclass(lin):
requires_grad = allow_requires_grad and lin.weight.requires_grad
lin.weight = torch.nn.Parameter(
constructor(lin.weight, **kwargs), requires_grad=requires_grad
)
lin.extra_repr = types.MethodType(_linear_extra_repr, lin)
return lin
return insert_subclass
[docs]def quantize_(
model: torch.nn.Module,
apply_tensor_subclass: Callable[[torch.nn.Module], torch.nn.Module],
filter_fn: Optional[Callable[[torch.nn.Module, str], bool]] = None,
set_inductor_config: bool = True,
device: Optional[torch.types.Device] = None,
):
"""Convert the weight of linear modules in the model with `apply_tensor_subclass`, model is modified inplace
Args:
model (torch.nn.Module): input model
apply_tensor_subclass (Callable[[torch.nn.Module], torch.nn.Module]): function that applies tensor subclass conversion to the weight of a module and return the module (e.g. convert the weight tensor of linear to affine quantized tensor)
filter_fn (Optional[Callable[[torch.nn.Module, str], bool]]): function that takes a nn.Module instance and fully qualified name of the module, returns True if we want to run `apply_tensor_subclass` on
the weight of the module
set_inductor_config (bool, optional): Whether to automatically use recommended inductor config settings (defaults to True)
device (device, optional): Device to move module to before applying `filter_fn`. This can be set to `"cuda"` to speed up quantization. The final model will be on the specified `device`.
Defaults to None (do not change device).
Example::
import torch
import torch.nn as nn
from torchao import quantize_
# 1. quantize with some predefined `apply_tensor_subclass` method that corresponds to
# optimized execution paths or kernels (e.g. int4 tinygemm kernel)
# also customizable with arguments
# currently options are
# int8_dynamic_activation_int4_weight (for executorch)
# int8_dynamic_activation_int8_weight (optimized with int8 mm op and torch.compile)
# int4_weight_only (optimized with int4 tinygemm kernel and torch.compile)
# int8_weight_only (optimized with int8 mm op and torch.compile
from torchao.quantization.quant_api import int4_weight_only
m = nn.Sequential(nn.Linear(32, 1024), nn.Linear(1024, 32))
quantize_(m, int4_weight_only(group_size=32))
# 2. write your own new apply_tensor_subclass
# You can also add your own apply_tensor_subclass by manually calling tensor subclass constructor
# on weight
from torchao.dtypes import to_affine_quantized_intx
# weight only uint4 asymmetric groupwise quantization
groupsize = 32
apply_weight_quant = lambda x: to_affine_quantized_intx(
x, "asymmetric", (1, groupsize), torch.int32, 0, 15, 1e-6,
zero_point_dtype=torch.bfloat16, preserve_zero=False, zero_point_domain="float")
def apply_weight_quant_to_linear(linear):
linear.weight = torch.nn.Parameter(apply_weight_quant(linear.weight), requires_grad=False)
return linear
# apply to modules under block0 submodule
def filter_fn(module: nn.Module, fqn: str) -> bool:
return isinstance(module, nn.Linear)
m = nn.Sequential(nn.Linear(32, 1024), nn.Linear(1024, 32))
quantize_(m, apply_weight_quant_to_linear, filter_fn)
"""
if set_inductor_config:
torchao.quantization.utils.recommended_inductor_config_setter()
_replace_with_custom_fn_if_matches_filter(
model,
apply_tensor_subclass,
_is_linear if filter_fn is None else filter_fn,
device=device,
)
def _int8_asymm_per_token_quant(x: torch.Tensor) -> torch.Tensor:
"""This is defined here instead of local function to support serialization"""
mapping_type = MappingType.ASYMMETRIC
target_dtype = torch.int8
if TORCH_VERSION_AT_LEAST_2_6:
return to_affine_quantized_intx(
x,
mapping_type,
_get_per_token_block_size(x),
target_dtype,
scale_dtype=torch.float64,
zero_point_dtype=torch.int64,
)
else:
return to_affine_quantized_intx(
x, mapping_type, _get_per_token_block_size(x), target_dtype
)
def _int8_symm_per_token_quant(x: torch.Tensor) -> torch.Tensor:
mapping_type = MappingType.SYMMETRIC
target_dtype = torch.int8
eps = 1e-5
quant_min = -127
quant_max = 127
return to_affine_quantized_intx(
x,
mapping_type,
_get_per_token_block_size(x),
target_dtype,
eps=eps,
quant_min=quant_min,
quant_max=quant_max,
scale_dtype=torch.float32,
)
def apply_int8_dynamic_activation_int4_weight_quant(
weight,
group_size=32,
layout=PlainLayout(),
mapping_type=MappingType.SYMMETRIC,
act_mapping_type=MappingType.ASYMMETRIC,
):
"""This is defined here instead of local function to support serialization"""
if group_size is None or group_size == -1:
group_size = weight.shape[-1]
if weight.shape[-1] % group_size != 0:
return weight
# weight settings
block_size = (1, group_size)
target_dtype = torch.int8
eps = torch.finfo(torch.float32).eps
quant_min = -8
quant_max = 7
# input settings
if act_mapping_type == MappingType.ASYMMETRIC:
input_quant_func = _int8_asymm_per_token_quant
elif act_mapping_type == MappingType.SYMMETRIC:
if isinstance(layout, MarlinQQQLayout):
input_quant_func = _int8_symm_per_token_quant
elif isinstance(layout, CutlassInt4PackedLayout):
input_quant_func = _int8_symm_per_token_reduced_range_quant_cutlass
else:
input_quant_func = _int8_symm_per_token_quant
else:
assert False, f"Unsupported activation mapping type: {act_mapping_type}"
if isinstance(layout, MarlinQQQLayout):
weight = to_marlinqqq_quantized_intx(
weight, block_size, quant_min, quant_max, _layout=layout
)
else:
weight = to_affine_quantized_intx(
weight,
mapping_type,
block_size,
target_dtype,
quant_min,
quant_max,
eps,
_layout=layout,
)
weight = to_linear_activation_quantized(weight, input_quant_func)
return weight
[docs]def int8_dynamic_activation_int4_weight(
group_size=32,
layout=PlainLayout(),
mapping_type=MappingType.SYMMETRIC,
act_mapping_type=MappingType.ASYMMETRIC,
):
"""Applies int8 dynamic per token asymmetric activation quantization and int4 per group weight symmetric quantization to linear
This is used to produce a model for executorch backend, but currently executorch did not
support lowering for the quantized model from this flow yet
Args:
`group_size`: parameter for quantization, controls the granularity of quantization, smaller
size is more fine grained
`layout`: layout type for quantized weight tensor, only supports `MarlinQQQLayout()` and `CutlassInt4PackedLayout()` for now
`mapping_type`: quantization type for weight, controls the weight quantization is symmetric or asymmetric
`act_mapping_type`: quantization type for activation, controls the activation quantization is symmetric or asymmetric
"""
return _get_linear_subclass_inserter(
apply_int8_dynamic_activation_int4_weight_quant,
group_size=group_size,
layout=layout,
mapping_type=mapping_type,
act_mapping_type=act_mapping_type,
)
def gemlite_uintx_weight_only(
group_size: Optional[int] = 64,
bit_width: int = 4,
packing_bitwidth: int = 32,
contiguous: Optional[bool] = None,
):
"""
applies weight only 4 or 8 bit integer quantization and utilizes the gemlite triton kernel and its associated weight packing format.
This only works for fp16 models. 8 bit quantization is symmetric, 4 bit quantization is asymmetric.
Args:
`group_size`: parameter for quantization, controls the granularity of quantization, smaller
size is more fine grained
`bit_width`: bit width of the quantized weight.
`packing_bitwidth`: bit width of the packed weight, should be 8 or 32. Can have performance impacts depending on hardware.
`contiguous`: if set, the weight will be packed as specified. Leaving it as None lets gemlite determine the best choice.
"""
from torchao.dtypes.uintx.gemlite_layout import get_gemlite_aqt_kwargs
use_hqq = True if bit_width == 4 else False
apply_fn = lambda weight: to_affine_quantized_intx(
weight,
**get_gemlite_aqt_kwargs(
weight, group_size, bit_width, packing_bitwidth, contiguous, use_hqq
),
)
return _get_linear_subclass_inserter(apply_fn)
[docs]def int4_weight_only(
group_size=128,
layout=TensorCoreTiledLayout(inner_k_tiles=8),
use_hqq=False,
zero_point_domain=None,
):
"""
Applies uint4 weight-only asymmetric per-group quantization to linear layers, using
"tensor_core_tiled" layout for speedup with tinygemm kernel
Note:
This is targeting `tinygemm` int4mm kernel (`torch.ops.aten._weight_int4pack_mm`
and `torch.ops.aten._weight_int4pack_mm_for_cpu`), the main difference
of quantization algorithm compared to the more traditional type of integer quantization is the following:
1). zero_point is in floating point domain instead of integer domain (`zero_point_domain`=`ZeroPointDomain.FLOAT`)
2). floating point zero does not have to be exactly representable (`preserve_zero`=False in `choose_qparams_affine`)
please follow the relevant code in `choose_qparams_affine`, `quantize_affine` and `dequantize_affine`
to learn about how the quantization parameters are chosen and how the Tensor is quantized/dequantized for tinygemm
Args:
`group_size`: parameter for quantization, controls the granularity of quantization, smaller
size is more fine grained, choices are [256, 128, 64, 32]
`layout`: layout type for quantized tensor, default is `TensorCoreTiledLayout(inner_k_tiles=8)`
`use_hqq`: whether to use hqq or default quantization mode, default is False
`zero_point_domain`: data type of zeros points, choices are [None(then the value is determined by the layout), ZeroPointDomain.FLOAT, ZeroPointDomain.INT, ZeroPointDomain.NONE]
"""
def apply_int4_weight_only_quant(weight):
if weight.shape[-1] % group_size != 0:
logger.info(
f"Skipping quantizing weight with int4 weight only quantization because the shape of weight {weight.shape} is not compatible with group_size {group_size}"
)
return weight
mapping_type = MappingType.ASYMMETRIC
block_size = (1, group_size)
target_dtype = torch.int32
quant_min = 0
quant_max = 15
eps = 1e-6
preserve_zero = LAYOUT_TO_PRESERVE_ZEROS[type(layout)]
zero_point_dtype = torch.bfloat16
nonlocal zero_point_domain
assert (
type(layout) in LAYOUT_TO_ZERO_POINT_DOMAIN.keys()
), f"Only support layout: {LAYOUT_TO_ZERO_POINT_DOMAIN.keys()}"
if zero_point_domain is None:
# the first value is the default one
zero_point_domain = LAYOUT_TO_ZERO_POINT_DOMAIN[type(layout)][0]
else:
assert (
zero_point_domain in LAYOUT_TO_ZERO_POINT_DOMAIN[type(layout)]
), f"Layout only support {LAYOUT_TO_ZERO_POINT_DOMAIN[layout]}"
# Sparse Marlin only supports symmetric quantization.
# NOTE: If we start having lots of layouts that require different configurations,
# we should consider moving this logic somewhere else.
if isinstance(layout, MarlinSparseLayout):
mapping_type = MappingType.SYMMETRIC
assert (
group_size == 128 or group_size == weight.shape[-1]
), f"MarlinSparseLayout only supports 128 group size or per channel quantization, got {group_size}"
return to_affine_quantized_intx(
weight,
mapping_type,
block_size,
target_dtype,
quant_min,
quant_max,
eps,
zero_point_dtype=zero_point_dtype,
preserve_zero=preserve_zero,
zero_point_domain=zero_point_domain,
_layout=layout,
use_hqq=use_hqq,
)
return _get_linear_subclass_inserter(apply_int4_weight_only_quant)
[docs]def int8_weight_only(group_size=None):
"""
Applies int8 weight-only symmetric per-channel quantization to linear layers.
"""
def apply_int8wo_quant(weight, group_size=None):
mapping_type = MappingType.SYMMETRIC
target_dtype = torch.int8
eps = torch.finfo(torch.float32).eps
zero_point_dtype = torch.int64
if group_size is None:
group_size = weight.shape[1]
block_size = (1, group_size)
return to_affine_quantized_intx(
weight,
mapping_type,
block_size,
target_dtype,
eps=eps,
zero_point_dtype=zero_point_dtype,
)
return _get_linear_subclass_inserter(apply_int8wo_quant, group_size=group_size)
def _int8_symm_per_token_reduced_range_quant(x: torch.Tensor) -> torch.Tensor:
mapping_type = MappingType.SYMMETRIC
target_dtype = torch.int8
eps = 1e-5
quant_min = -127
quant_max = 127
return to_affine_quantized_intx(
x,
mapping_type,
_get_per_token_block_size(x),
target_dtype,
eps=eps,
quant_min=quant_min,
quant_max=quant_max,
scale_dtype=torch.float32 if x.dtype == torch.float16 else None,
)
def _int8_symm_per_token_reduced_range_quant_noop_decode(
x: torch.Tensor,
) -> torch.Tensor:
mapping_type = MappingType.SYMMETRIC
target_dtype = torch.int8
eps = 1e-5
quant_min = -127
quant_max = 127
if x.shape[1] == 1:
return x
else:
return to_affine_quantized_intx(
x,
mapping_type,
_get_per_token_block_size(x),
target_dtype,
eps=eps,
quant_min=quant_min,
quant_max=quant_max,
scale_dtype=torch.float32 if x.dtype == torch.float16 else None,
)
def _int8_symm_per_token_reduced_range_quant_cutlass(
x: torch.Tensor,
) -> torch.Tensor:
mapping_type = MappingType.SYMMETRIC
target_dtype = torch.int8
eps = 1e-5
quant_min = -127
quant_max = 127
return to_affine_quantized_intx(
x,
mapping_type,
_get_per_token_block_size(x),
target_dtype,
eps=eps,
zero_point_domain=ZeroPointDomain.NONE,
quant_min=quant_min,
quant_max=quant_max,
scale_dtype=torch.float16 if x.dtype == torch.float16 else None,
)
[docs]def int8_dynamic_activation_int8_weight(
layout=PlainLayout(),
act_mapping_type=MappingType.SYMMETRIC,
weight_only_decode=False,
):
"""
Applies int8 dynamic symmetric per-token activation and int8 per-channel weight
quantization to linear layers
"""
def apply_int8_dynamic_activation_int8_weight_quant(weight):
in_features = weight.shape[1]
# int8 dynamic quantization only has benefit when in_feature > 16
if in_features <= 16:
logger.info(
f"Skipping applying int8_dynamic_activation_int8_weight to weight of shape {weight.shape}"
f" because `in_feature` is <= 16: {in_features}"
)
return weight
# weight settings
mapping_type = MappingType.SYMMETRIC
def get_weight_block_size(x):
return (1, x.shape[1])
target_dtype = torch.int8
eps = torch.finfo(torch.float32).eps
zero_point_dtype = torch.int64
if weight_only_decode:
input_quant_func = _int8_symm_per_token_reduced_range_quant_noop_decode
else:
# input settings
if act_mapping_type == MappingType.SYMMETRIC:
input_quant_func = _int8_symm_per_token_reduced_range_quant
else:
input_quant_func = _int8_asymm_per_token_quant
block_size = get_weight_block_size(weight)
weight = to_affine_quantized_intx(
weight,
mapping_type,
block_size,
target_dtype,
eps=eps,
zero_point_dtype=zero_point_dtype,
_layout=layout,
)
weight = to_linear_activation_quantized(weight, input_quant_func)
return weight
return _get_linear_subclass_inserter(
apply_int8_dynamic_activation_int8_weight_quant
)
def int8_dynamic_activation_int8_semi_sparse_weight():
"""
Applies int8 dnynamic symmetric per-token activation and int8 per-channel weight
quantization + 2:4 sparsity to linear layers.
"""
warnings.warn("""int8_dyanmic_activation_int8_semi_sparse_weight() will be deprecated at a later release. Please use the layout kwarg in int8_dynamic_activation_int8_weight instead.
from torchao.dtypes import SemiSparseLayout
int8_dynamic_activation_int8_weight(layout=SemiSparseLayout()""")
return int8_dynamic_activation_int8_weight(layout=SemiSparseLayout())
[docs]def float8_weight_only(weight_dtype: torch.dtype = torch.float8_e4m3fn):
"""
Applies float8 weight-only symmetric per-channel quantization to linear layers.
Args:
weight_dtype (torch.dtype): The target data type for weight quantization. Default is torch.float8_e4m3fn.
Note:
The actual matmul will be computed in original precision of the weight tensor.
"""
from torchao.dtypes import to_affine_quantized_floatx
def apply_float8wo_quant(weight):
block_size = (1, weight.shape[1])
return to_affine_quantized_floatx(
input_float=weight,
block_size=block_size,
target_dtype=weight_dtype,
scale_dtype=None,
_layout=Float8Layout(mm_config=None),
)
return _get_linear_subclass_inserter(apply_float8wo_quant)
_fp8_granularities = Union[PerTensor, PerRow]
# Validate and process granularity input
def _normalize_granularity(
granularity: Optional[
Union[_fp8_granularities, Tuple[_fp8_granularities, _fp8_granularities]]
],
) -> Tuple[_fp8_granularities, _fp8_granularities]:
processed_granularity = None
if granularity is None:
processed_granularity = (PerTensor(), PerTensor())
elif isinstance(granularity, (PerTensor, PerRow)):
processed_granularity = (granularity, granularity)
elif isinstance(granularity, tuple) and len(granularity) == 2:
if not (
isinstance(granularity[0], (PerTensor, PerRow))
and isinstance(granularity[1], (PerTensor, PerRow))
):
raise ValueError(
f"Invalid granularity types: {granularity}, only PerTensor or PerRow are supported."
)
if not isinstance(granularity[0], type(granularity[1])):
raise ValueError(
f"Different granularities for activation and weight are not supported: {granularity}, only PerTensor or PerRow are supported."
)
processed_granularity = granularity
else:
raise ValueError(
f"Invalid granularity specification: {granularity}, only PerTensor or PerRow are supported."
)
# Validate granularity with supported Hardware
for _granularity in processed_granularity:
if isinstance(_granularity, PerTensor):
assert (
is_sm_at_least_89() or is_MI300()
), "PerTensor quantization only works for CUDA>=8.9 and MI300+"
elif isinstance(_granularity, PerRow):
assert (
is_sm_at_least_90() or is_MI300()
), "PerRow quantization only works for CUDA>=9.0 and MI300+"
else:
raise ValueError(f"Invalid granularity type: {_granularity}")
return processed_granularity
def _input_activation_quant_func_fp8(
x: torch.Tensor,
activation_granularity: _fp8_granularities,
activation_dtype: torch.dtype,
scale: Optional[torch.Tensor] = None,
zero_point: Optional[torch.Tensor] = None,
):
"""This function is used to quantize the input activation tensor for an aqt_float variant. If scale
is not provided it will be dynamically calculate the scales otherwise it will use the provided scale.
"""
assert (
zero_point is None
), "Zero point is not supported for dynamic FP8 quantization"
if isinstance(activation_granularity, PerRow):
assert (
x.dtype == torch.bfloat16
), "PerRow quantization only works for bfloat16 precision input activation"
block_size = get_block_size(x.shape, activation_granularity)
if scale is None:
activation = to_affine_quantized_floatx(
input_float=x,
block_size=block_size,
target_dtype=activation_dtype,
scale_dtype=torch.float32,
_layout=Float8Layout(mm_config=None), # Config is stored on weight
)
else:
assert isinstance(
activation_granularity, PerTensor
), "Static quantization only supports PerTensor granularity"
activation = to_affine_quantized_floatx_static(
input_float=x,
block_size=block_size,
scale=scale,
target_dtype=activation_dtype,
_layout=Float8Layout(mm_config=None), # Config is stored on weight
)
return activation
def _fp8_mm_compat(weight: torch.Tensor) -> bool:
"""
Check if a weight tensor meets float8 quantization requirements.
Args:
weight (torch.Tensor): The weight tensor to check
Returns:
bool: True if the tensor can be quantized to float8, False otherwise
"""
assert (
weight.dim() == 2
), f"float8 quantization only works for 2-D tensors, got {weight.dim()}D tensor"
out_dim, in_dim = weight.shape
is_compatible = (in_dim % 16 == 0) and (out_dim % 16 == 0)
if not is_compatible:
logger.info(
f"Skipping float8 quantization: weight shape {weight.shape} is not compatible with _scaled_mm. "
f"Both input dimension ({in_dim}) and output dimension ({out_dim}) must be multiples of 16. "
)
return is_compatible
[docs]def float8_dynamic_activation_float8_weight(
activation_dtype: torch.dtype = torch.float8_e4m3fn,
weight_dtype: torch.dtype = torch.float8_e4m3fn,
granularity: Optional[
Union[_fp8_granularities, Tuple[_fp8_granularities, _fp8_granularities]]
] = None,
mm_config: Optional[Float8MMConfig] = None,
):
"""
Applies float8 dynamic symmetric quantization to both activations and weights of linear layers.
Args:
activation_dtype (torch.dtype): The target data type for activation quantization. Default is torch.float8_e4m3fn.
weight_dtype (torch.dtype): The target data type for weight quantization. Default is torch.float8_e4m3fn.
granularity:
The granularity for quantization. Can be either a single granularity (applied to both
activations and weights) or a tuple of two granularities (one for activations, one for weights).
If None, defaults to PerTensor for both. Currently both quantizations need to be the same type. And
only PerTensor and PerRow are supported.
mm_config (Float8MMConfig): Configuration for the matrix multiplication. Default uses fast accumulation.
"""
assert (
is_sm_at_least_89() or is_MI300()
), "Float8 dynamic activation quantization is only supported on CUDA>=8.9 and MI300+"
if mm_config is None:
mm_config = Float8MMConfig(use_fast_accum=True)
activation_granularity, weight_granularity = _normalize_granularity(granularity)
def apply_float8_dynamic_activation_quant(weight: torch.Tensor):
if not _fp8_mm_compat(weight):
return weight
if isinstance(weight_granularity, PerRow):
assert (
weight.dtype == torch.bfloat16
), "PerRow quantization only works for bfloat16 precision input weight"
block_size = get_block_size(weight.shape, weight_granularity)
quantized_weight = to_affine_quantized_floatx(
input_float=weight,
block_size=block_size,
target_dtype=weight_dtype,
scale_dtype=torch.float32,
_layout=Float8Layout(mm_config=mm_config),
)
input_quant_func = _input_activation_quant_func_fp8
input_quant_kwargs = {
"activation_granularity": activation_granularity,
"activation_dtype": activation_dtype,
}
quantized_weight = to_linear_activation_quantized(
quantized_weight, input_quant_func, quant_kwargs=input_quant_kwargs
)
return quantized_weight
return _get_linear_subclass_inserter(apply_float8_dynamic_activation_quant)
[docs]def float8_static_activation_float8_weight(
scale: torch.Tensor,
activation_dtype: torch.dtype = torch.float8_e4m3fn,
weight_dtype: torch.dtype = torch.float8_e4m3fn,
granularity: Optional[
Union[_fp8_granularities, Tuple[_fp8_granularities, _fp8_granularities]]
] = None,
mm_config: Optional[Float8MMConfig] = None,
):
"""
Applies float8 static symmetric quantization to
Args:
scale (torch.Tensor): The scale tensor for activation quantization.
activation_dtype (torch.dtype): The target data type for activation quantization. Default is torch.float8_e4m
weight_dtype (torch.dtype): The target data type for weight quantization. Default is torch.float8_e4m
mm_config (Float8MMConfig): Configuration for the matrix multiplication. Default uses fast accumulation.
"""
assert (
is_sm_at_least_89() or is_MI300()
), "Float8 static activation quantization is only supported on CUDA 8.9 and above"
if mm_config is None:
mm_config = Float8MMConfig(use_fast_accum=True)
activation_granularity, weight_granularity = _normalize_granularity(granularity)
assert isinstance(
activation_granularity, PerTensor
), "Static quantization only supports PerTensor granularity"
def apply_float8_static_activation_quant(weight: torch.Tensor):
if not _fp8_mm_compat(weight):
return weight
block_size = get_block_size(weight.shape, weight_granularity)
quantized_weight = to_affine_quantized_floatx(
input_float=weight,
block_size=block_size,
target_dtype=weight_dtype,
scale_dtype=torch.float32,
_layout=Float8Layout(mm_config=mm_config),
)
input_quant_func = _input_activation_quant_func_fp8
input_quant_kwargs = {
"activation_granularity": activation_granularity,
"activation_dtype": activation_dtype,
}
quantized_weight = (
to_weight_tensor_with_linear_activation_quantization_metadata(
quantized_weight,
input_quant_func,
scale=scale,
zero_point=None,
quant_kwargs=input_quant_kwargs,
)
)
return quantized_weight
return _get_linear_subclass_inserter(apply_float8_static_activation_quant)
[docs]def uintx_weight_only(dtype, group_size=64, pack_dim=-1, use_hqq=False):
"""
Applies uintx weight-only asymmetric per-group quantization to linear layers, using uintx quantization where
x is the number of bits specified by `dtype`
Args:
`dtype`: torch.uint1 to torch.uint7 sub byte dtypes
`group_size`: parameter for quantization, controls the granularity of quantization, smaller
size is more fine grained, defaults to 64
`pack_dim`: the dimension we use for packing, defaults to -1
`use_hqq`: whether to use hqq algorithm or the default algorithm to quantize the weight
"""
from torchao.quantization.quant_primitives import _DTYPE_TO_QVALUE_BOUNDS
SUPPORTED_DTYPES = {
torch.uint1,
torch.uint2,
torch.uint3,
torch.uint4,
torch.uint5,
torch.uint6,
torch.uint7,
torch.uint8,
}
assert dtype in SUPPORTED_DTYPES, f"Unsupported dtype for hqq: {dtype}"
def apply_uintx_weight_only_quant(weight, dtype):
mapping_type = MappingType.ASYMMETRIC
block_size = (1, group_size)
if use_hqq:
if dtype == torch.uint4:
logger.warn(
"Recommended to use `int4_weight_only(group_size, use_hqq=True)` for the best performance"
)
quant_min, quant_max = _DTYPE_TO_QVALUE_BOUNDS[dtype]
dtype = torch.uint8
eps = None
zero_point_dtype = None
zero_point_domain = ZeroPointDomain.FLOAT
preserve_zero = False
_layout = PlainLayout()
else:
quant_min, quant_max = None, None
eps = torch.finfo(torch.float32).eps
zero_point_dtype = torch.int32
zero_point_domain = ZeroPointDomain.INT
preserve_zero = True
_layout = UintxLayout(dtype=dtype, pack_dim=pack_dim)
return to_affine_quantized_intx(
weight,
mapping_type,
block_size,
dtype,
quant_min=quant_min,
quant_max=quant_max,
eps=eps,
zero_point_dtype=zero_point_dtype,
zero_point_domain=zero_point_domain,
preserve_zero=preserve_zero,
_layout=_layout,
use_hqq=use_hqq,
)
return _get_linear_subclass_inserter(apply_uintx_weight_only_quant, dtype=dtype)
[docs]def fpx_weight_only(ebits: int, mbits: int):
"""Sub-byte floating point dtypes defined by `ebits`: exponent bits and `mbits`: mantissa bits
e.g. fp6_e3_m2, fp6_e2_m3, ...
The packing format and kernels are from the fp6-llm paper: https://arxiv.org/abs/2401.14112
github repo: https://github.com/usyd-fsalab/fp6_llm, now renamed to quant-llm
For more details for packing please see: :class:`~torchao.dtypes.fpx.FpxTensorCoreAQTTensorImpl`
This is experimental, will be merged with `to_affine_quantized_floatx`
in the future
"""
def apply_quant_llm(weight: torch.Tensor) -> torch.Tensor:
from torchao.dtypes import to_affine_quantized_fpx
from torchao.dtypes.floatx import FloatxTensorCoreLayout
assert (
weight.dim() == 2
), f"floatx only works for 2-d Tensor, got: {weight.dim()}"
out_dim, in_dim = weight.shape
if (in_dim % 64 != 0) or (out_dim % 256 != 0):
logger.info(
f"Skipping floatx quantization float{ebits + mbits + 1}_{ebits}_{mbits} because "
f"the shape is not compatible with the kernel: in_dim={in_dim}, out_dim={out_dim} "
"expected in_dim % 64 == 0 and out_dim % 256 == 0"
)
return weight
_layout = FloatxTensorCoreLayout(ebits, mbits)
return to_affine_quantized_fpx(weight, _layout)
return _get_linear_subclass_inserter(apply_quant_llm)
if TORCH_VERSION_AT_LEAST_2_5:
torch.serialization.add_safe_globals(
[
_int8_asymm_per_token_quant,
_int8_symm_per_token_reduced_range_quant,
_int8_symm_per_token_reduced_range_quant_cutlass,
_input_activation_quant_func_fp8,
]
)