Shortcuts

Source code for torch.functional

import torch
import torch.nn.functional as F
from torch._six import inf
from itertools import product
import warnings

__all__ = [
    'broadcast_tensors',
    'btrifact',
    'btrifact_with_info',
    'btrisolve',
    'btriunpack',
    'cartesian_prod',
    'chain_matmul',
    'einsum',
    'gesv',
    'isfinite',
    'isinf',
    'lu',
    'lu_unpack',
    'norm',
    'meshgrid',
    'pstrf',
    'potrf',
    'potri',
    'potrs',
    'split',
    'stft',
    'tensordot',
    'trtrs',
    'unique',
    'unique_consecutive',
]


[docs]def broadcast_tensors(*tensors): r"""broadcast_tensors(*tensors) -> List of Tensors Broadcasts the given tensors according to :ref:`broadcasting-semantics`. Args: *tensors: any number of tensors of the same type .. warning:: More than one element of a broadcasted tensor may refer to a single memory location. As a result, in-place operations (especially ones that are vectorized) may result in incorrect behavior. If you need to write to the tensors, please clone them first. Example:: >>> x = torch.arange(3).view(1, 3) >>> y = torch.arange(2).view(2, 1) >>> a, b = torch.broadcast_tensors(x, y) >>> a.size() torch.Size([2, 3]) >>> a tensor([[0, 1, 2], [0, 1, 2]]) """ return torch._C._VariableFunctions.broadcast_tensors(tensors)
[docs]def split(tensor, split_size_or_sections, dim=0): r"""Splits the tensor into chunks. If :attr:`split_size_or_sections` is an integer type, then :attr:`tensor` will be split into equally sized chunks (if possible). Last chunk will be smaller if the tensor size along the given dimension :attr:`dim` is not divisible by :attr:`split_size`. If :attr:`split_size_or_sections` is a list, then :attr:`tensor` will be split into ``len(split_size_or_sections)`` chunks with sizes in :attr:`dim` according to :attr:`split_size_or_sections`. Arguments: tensor (Tensor): tensor to split. split_size_or_sections (int) or (list(int)): size of a single chunk or list of sizes for each chunk dim (int): dimension along which to split the tensor. """ # Overwriting reason: # This dispatches to two ATen functions depending on the type of # split_size_or_sections. The branching code is in tensor.py, which we # call here. return tensor.split(split_size_or_sections, dim)
[docs]def lu_unpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True): r"""Unpacks the data and pivots from a LU factorization of a tensor. Returns a tuple of tensors as ``(the pivots, the L tensor, the U tensor)``. Arguments: LU_data (Tensor): the packed LU factorization data LU_pivots (Tensor): the packed LU factorization pivots unpack_data (bool): flag indicating if the data should be unpacked unpack_pivots (bool): flag indicating if the pivots should be unpacked Example:: >>> A = torch.randn(2, 3, 3) >>> A_LU, pivots = A.lu() >>> P, A_L, A_U = torch.lu_unpack(A_LU, pivots) >>> >>> # can recover A from factorization >>> A_ = torch.bmm(P, torch.bmm(A_L, A_U)) """ sz = LU_data.size(-1) if unpack_data: U = LU_data.triu() L = LU_data.tril() L.diagonal(dim1=-2, dim2=-1).fill_(1) else: L = U = None if unpack_pivots: LU_pivots_zero_idx = LU_pivots - 1 if LU_data.dim() > 2: P = torch.eye(sz, device=LU_data.device, dtype=LU_data.dtype).expand_as(LU_data).clone() for idx in product(*map(lambda x: list(range(x)), LU_data.shape[:-2])): final_order = list(range(sz)) for k, j in enumerate(LU_pivots_zero_idx[idx]): final_order[k], final_order[j] = final_order[j], final_order[k] P[idx] = P[idx].index_select(1, torch.as_tensor(final_order, device=LU_pivots.device)) else: P = torch.eye(sz, device=LU_data.device, dtype=LU_data.dtype) final_order = list(range(sz)) for k, j, in enumerate(LU_pivots_zero_idx): final_order[k], final_order[j] = final_order[j], final_order[k] P = P.index_select(1, torch.as_tensor(final_order, device=LU_pivots.device)) else: P = None return P, L, U
[docs]def einsum(equation, *operands): r"""einsum(equation, *operands) -> Tensor This function provides a way of computing multilinear expressions (i.e. sums of products) using the Einstein summation convention. Args: equation (string): The equation is given in terms of lower case letters (indices) to be associated with each dimension of the operands and result. The left hand side lists the operands dimensions, separated by commas. There should be one index letter per tensor dimension. The right hand side follows after `->` and gives the indices for the output. If the `->` and right hand side are omitted, it implicitly defined as the alphabetically sorted list of all indices appearing exactly once in the left hand side. The indices not apprearing in the output are summed over after multiplying the operands entries. If an index appears several times for the same operand, a diagonal is taken. Ellipses `...` represent a fixed number of dimensions. If the right hand side is inferred, the ellipsis dimensions are at the beginning of the output. operands (list of Tensors): The operands to compute the Einstein sum of. Examples:: >>> x = torch.randn(5) >>> y = torch.randn(4) >>> torch.einsum('i,j->ij', x, y) # outer product tensor([[-0.0570, -0.0286, -0.0231, 0.0197], [ 1.2616, 0.6335, 0.5113, -0.4351], [ 1.4452, 0.7257, 0.5857, -0.4984], [-0.4647, -0.2333, -0.1883, 0.1603], [-1.1130, -0.5588, -0.4510, 0.3838]]) >>> A = torch.randn(3,5,4) >>> l = torch.randn(2,5) >>> r = torch.randn(2,4) >>> torch.einsum('bn,anm,bm->ba', l, A, r) # compare torch.nn.functional.bilinear tensor([[-0.3430, -5.2405, 0.4494], [ 0.3311, 5.5201, -3.0356]]) >>> As = torch.randn(3,2,5) >>> Bs = torch.randn(3,5,4) >>> torch.einsum('bij,bjk->bik', As, Bs) # batch matrix multiplication tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], [-1.6706, -0.8097, -0.8025, -2.1183]], [[ 4.2239, 0.3107, -0.5756, -0.2354], [-1.4558, -0.3460, 1.5087, -0.8530]], [[ 2.8153, 1.8787, -4.3839, -1.2112], [ 0.3728, -2.1131, 0.0921, 0.8305]]]) >>> A = torch.randn(3, 3) >>> torch.einsum('ii->i', A) # diagonal tensor([-0.7825, 0.8291, -0.1936]) >>> A = torch.randn(4, 3, 3) >>> torch.einsum('...ii->...i', A) # batch diagonal tensor([[-1.0864, 0.7292, 0.0569], [-0.9725, -1.0270, 0.6493], [ 0.5832, -1.1716, -1.5084], [ 0.4041, -1.1690, 0.8570]]) >>> A = torch.randn(2, 3, 4, 5) >>> torch.einsum('...ij->...ji', A).shape # batch permute torch.Size([2, 3, 5, 4]) """ if len(operands) == 1 and isinstance(operands[0], (list, tuple)): # the old interface of passing the operands as one list argument operands = operands[0] return torch._C._VariableFunctions.einsum(equation, operands)
[docs]def isfinite(tensor): r"""Returns a new tensor with boolean elements representing if each element is `Finite` or not. Arguments: tensor (Tensor): A tensor to check Returns: Tensor: A ``torch.ByteTensor`` containing a 1 at each location of finite elements and 0 otherwise Example:: >>> torch.isfinite(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([ 1, 0, 1, 0, 0], dtype=torch.uint8) """ if not isinstance(tensor, torch.Tensor): raise ValueError("The argument is not a tensor", str(tensor)) # Support int input, nan and inf are concepts in floating point numbers. # Numpy uses type 'Object' when the int overflows long, but we don't # have a similar concept. It's safe to assume any created LongTensor doesn't # overflow and it's finite. if not tensor.is_floating_point(): return torch.ones_like(tensor, dtype=torch.uint8) return (tensor == tensor) & (tensor.abs() != inf)
[docs]def isinf(tensor): r"""Returns a new tensor with boolean elements representing if each element is `+/-INF` or not. Arguments: tensor (Tensor): A tensor to check Returns: Tensor: A ``torch.ByteTensor`` containing a 1 at each location of `+/-INF` elements and 0 otherwise Example:: >>> torch.isinf(torch.tensor([1, float('inf'), 2, float('-inf'), float('nan')])) tensor([ 0, 1, 0, 1, 0], dtype=torch.uint8) """ if not isinstance(tensor, torch.Tensor): raise ValueError("The argument is not a tensor", str(tensor)) if tensor.dtype in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]: return torch.zeros_like(tensor, dtype=torch.uint8) return tensor.abs() == inf
[docs]def meshgrid(*tensors, **kwargs): r"""Take :math:`N` tensors, each of which can be either scalar or 1-dimensional vector, and create :math:`N` N-dimensional grids, where the :math:`i` :sup:`th` grid is defined by expanding the :math:`i` :sup:`th` input over dimensions defined by other inputs. Args: tensors (list of Tensor): list of scalars or 1 dimensional tensors. Scalars will be treated as tensors of size :math:`(1,)` automatically Returns: seq (sequence of Tensors): If the input has :math:`k` tensors of size :math:`(N_1,), (N_2,), \ldots , (N_k,)`, then the output would also has :math:`k` tensors, where all tensors are of size :math:`(N_1, N_2, \ldots , N_k)`. Example:: >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([4, 5, 6]) >>> grid_x, grid_y = torch.meshgrid(x, y) >>> grid_x tensor([[1, 1, 1], [2, 2, 2], [3, 3, 3]]) >>> grid_y tensor([[4, 5, 6], [4, 5, 6], [4, 5, 6]]) """ if kwargs: raise TypeError("meshgrid() got an unexpected keyword argument '%s'" % (list(kwargs)[0],)) if len(tensors) == 1 and isinstance(tensors[0], (list, tuple)): # the old interface of passing the operands as one list argument tensors = tensors[0] return torch._C._VariableFunctions.meshgrid(tensors)
[docs]def stft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, pad_mode='reflect', normalized=False, onesided=True): r"""Short-time Fourier transform (STFT). Ignoring the optional batch dimension, this method computes the following expression: .. math:: X[m, \omega] = \sum_{k = 0}^{\text{win\_length-1}}% \text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\ % \exp\left(- j \frac{2 \pi \cdot \omega k}{\text{win\_length}}\right), where :math:`m` is the index of the sliding window, and :math:`\omega` is the frequency that :math:`0 \leq \omega < \text{n\_fft}`. When :attr:`onesided` is the default value ``True``, * :attr:`input` must be either a 1-D time sequence or a 2-D batch of time sequences. * If :attr:`hop_length` is ``None`` (default), it is treated as equal to ``floor(n_fft / 4)``. * If :attr:`win_length` is ``None`` (default), it is treated as equal to :attr:`n_fft`. * :attr:`window` can be a 1-D tensor of size :attr:`win_length`, e.g., from :meth:`torch.hann_window`. If :attr:`window` is ``None`` (default), it is treated as if having :math:`1` everywhere in the window. If :math:`\text{win\_length} < \text{n\_fft}`, :attr:`window` will be padded on both sides to length :attr:`n_fft` before being applied. * If :attr:`center` is ``True`` (default), :attr:`input` will be padded on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Otherwise, the :math:`t`-th frame begins at time :math:`t \times \text{hop\_length}`. * :attr:`pad_mode` determines the padding method used on :attr:`input` when :attr:`center` is ``True``. See :meth:`torch.nn.functional.pad` for all available options. Default is ``"reflect"``. * If :attr:`onesided` is ``True`` (default), only values for :math:`\omega` in :math:`\left[0, 1, 2, \dots, \left\lfloor \frac{\text{n\_fft}}{2} \right\rfloor + 1\right]` are returned because the real-to-complex Fourier transform satisfies the conjugate symmetry, i.e., :math:`X[m, \omega] = X[m, \text{n\_fft} - \omega]^*`. * If :attr:`normalized` is ``True`` (default is ``False``), the function returns the normalized STFT results, i.e., multiplied by :math:`(\text{frame\_length})^{-0.5}`. Returns the real and the imaginary parts together as one tensor of size :math:`(* \times N \times T \times 2)`, where :math:`*` is the optional batch size of :attr:`input`, :math:`N` is the number of frequencies where STFT is applied, :math:`T` is the total number of frames used, and each pair in the last dimension represents a complex number as the real part and the imaginary part. .. warning:: This function changed signature at version 0.4.1. Calling with the previous signature may cause error or return incorrect result. Arguments: input (Tensor): the input tensor n_fft (int): size of Fourier transform hop_length (int, optional): the distance between neighboring sliding window frames. Default: ``None`` (treated as equal to ``floor(n_fft / 4)``) win_length (int, optional): the size of window frame and STFT filter. Default: ``None`` (treated as equal to :attr:`n_fft`) window (Tensor, optional): the optional window function. Default: ``None`` (treated as window of all :math:`1` s) center (bool, optional): whether to pad :attr:`input` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Default: ``True`` pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. Default: ``"reflect"`` normalized (bool, optional): controls whether to return the normalized STFT results Default: ``False`` onesided (bool, optional): controls whether to return half of results to avoid redundancy Default: ``True`` Returns: Tensor: A tensor containing the STFT result with shape described above """ # TODO: after having proper ways to map Python strings to ATen Enum, move # this and F.pad to ATen. if center: signal_dim = input.dim() extended_shape = [1] * (3 - signal_dim) + list(input.size()) pad = int(n_fft // 2) input = F.pad(input.view(extended_shape), (pad, pad), pad_mode) input = input.view(input.shape[-signal_dim:]) return torch._C._VariableFunctions.stft(input, n_fft, hop_length, win_length, window, normalized, onesided)
del torch.unique_dim
[docs]def unique(input, sorted=True, return_inverse=False, return_counts=False, dim=None): r"""Returns the unique elements of the input tensor. Arguments: input (Tensor): the input tensor sorted (bool): Whether to sort the unique elements in ascending order before returning as output. return_inverse (bool): Whether to also return the indices for where elements in the original input ended up in the returned unique list. return_counts (bool): Whether to also return the counts for each unique element. dim (int): the dimension to apply unique. If ``None``, the unique of the flattened input is returned. default: ``None`` Returns: (Tensor, Tensor (optional) Tensor (optional)):: A tensor or a tuple of tensors containing - **output** (*Tensor*): the output list of unique scalar elements. - **inverse_indices** (*Tensor*): (optional) if :attr:`return_inverse` is True, there will be an additional returned tensor (same shape as input) representing the indices for where elements in the original input map to in the output; otherwise, this function will only return a single tensor. - **counts** (*Tensor*): (optional) if :attr:`return_counts` is True, there will be an additional returned tensor (same shape as output or output.size(dim), if dim was specified) representing the number of occurrences for each unique value or tensor. Example:: >>> output = torch.unique(torch.tensor([1, 3, 2, 3], dtype=torch.long)) >>> output tensor([ 2, 3, 1]) >>> output, inverse_indices = torch.unique( torch.tensor([1, 3, 2, 3], dtype=torch.long), sorted=True, return_inverse=True) >>> output tensor([ 1, 2, 3]) >>> inverse_indices tensor([ 0, 2, 1, 2]) >>> output, inverse_indices = torch.unique( torch.tensor([[1, 3], [2, 3]], dtype=torch.long), sorted=True, return_inverse=True) >>> output tensor([ 1, 2, 3]) >>> inverse_indices tensor([[ 0, 2], [ 1, 2]]) """ if dim is not None: output, inverse_indices, counts = torch._C._VariableFunctions.unique_dim( input, dim, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, ) else: output, inverse_indices, counts = torch._unique2( input, sorted=sorted, return_inverse=return_inverse, return_counts=return_counts, ) if return_inverse and return_counts: return output, inverse_indices, counts elif return_inverse: return output, inverse_indices elif return_counts: return output, counts else: return output
[docs]def unique_consecutive(input, return_inverse=False, return_counts=False, dim=None): r"""Eliminates all but the first element from every consecutive group of equivalent elements. .. note:: This function is different from :func:`torch.unique` in the sense that this function only eliminates consecutive duplicate values. This semantics is similar to `std::unique` in C++. Arguments: input (Tensor): the input tensor return_inverse (bool): Whether to also return the indices for where elements in the original input ended up in the returned unique list. return_counts (bool): Whether to also return the counts for each unique element. dim (int): the dimension to apply unique. If ``None``, the unique of the flattened input is returned. default: ``None`` Returns: (Tensor, Tensor (optional), Tensor (optional)): A tensor or a tuple of tensors containing - **output** (*Tensor*): the output list of unique scalar elements. - **inverse_indices** (*Tensor*): (optional) if :attr:`return_inverse` is True, there will be an additional returned tensor (same shape as input) representing the indices for where elements in the original input map to in the output; otherwise, this function will only return a single tensor. - **counts** (*Tensor*): (optional) if :attr:`return_counts` is True, there will be an additional returned tensor (same shape as output or output.size(dim), if dim was specified) representing the number of occurrences for each unique value or tensor. Example:: >>> x = torch.tensor([1, 1, 2, 2, 3, 1, 1, 2]) >>> output = torch.unique_consecutive(x) >>> output tensor([1, 2, 3, 1, 2]) >>> output, inverse_indices = torch.unique_consecutive(x, return_inverse=True) >>> output tensor([1, 2, 3, 1, 2]) >>> inverse_indices tensor([0, 0, 1, 1, 2, 3, 3, 4]) >>> output, counts = torch.unique_consecutive(x, return_counts=True) >>> output tensor([1, 2, 3, 1, 2]) >>> counts tensor([2, 2, 1, 2, 1]) """ output, inverse_indices, counts = torch._C._VariableFunctions.unique_consecutive( input, return_inverse=return_inverse, return_counts=return_counts, dim=dim) if return_inverse and return_counts: return output, inverse_indices, counts if return_inverse: return output, inverse_indices if return_counts: return output, counts return output
[docs]def tensordot(a, b, dims=2): r"""Returns a contraction of a and b over multiple dimensions. :attr:`tensordot` implements a generalizes the matrix product. Args: a (Tensor): Left tensor to contract b (Tensor): Right tensor to contract dims (int or tuple of two lists of integers): number of dimensions to contract or explicit lists of dimensions for :attr:`a` and :attr:`b` respectively When called with an integer argument :attr:`dims` = :math:`d`, and the number of dimensions of :attr:`a` and :attr:`b` is :math:`m` and :math:`n`, respectively, it computes .. math:: r_{i_0,...,i_{m-d}, i_d,...,i_n} = \sum_{k_0,...,k_{d-1}} a_{i_0,...,i_{m-d},k_0,...,k_{d-1}} \times b_{k_0,...,k_{d-1}, i_d,...,i_n}. When called with :attr:`dims` of the list form, the given dimensions will be contracted in place of the last :math:`d` of :attr:`a` and the first :math:`d` of :math:`b`. The sizes in these dimensions must match, but :attr:`tensordot` will deal with broadcasted dimensions. Examples:: >>> a = torch.arange(60.).reshape(3, 4, 5) >>> b = torch.arange(24.).reshape(4, 3, 2) >>> torch.tensordot(a, b, dims=([1, 0], [0, 1])) tensor([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) >>> a = torch.randn(3, 4, 5, device='cuda') >>> b = torch.randn(4, 5, 6, device='cuda') >>> c = torch.tensordot(a, b, dims=2).cpu() tensor([[ 8.3504, -2.5436, 6.2922, 2.7556, -1.0732, 3.2741], [ 3.3161, 0.0704, 5.0187, -0.4079, -4.3126, 4.8744], [ 0.8223, 3.9445, 3.2168, -0.2400, 3.4117, 1.7780]]) """ if isinstance(dims, (list, tuple)) or \ (isinstance(dims, torch.Tensor) and dims.numel() > 1): dims_a, dims_b = dims else: if isinstance(dims, torch.Tensor): dims = dims.item() dims_a = list(range(-dims, 0)) dims_b = list(range(dims)) return torch._C._VariableFunctions.tensordot(a, b, dims_a, dims_b)
[docs]def cartesian_prod(*tensors): """Do cartesian product of the given sequence of tensors. The behavior is similar to python's `itertools.product`. Arguments: *tensors: any number of 1 dimensional tensors. Returns: Tensor: A tensor equivalent to converting all the input tensors into lists, do `itertools.product` on these lists, and finally convert the resulting list into tensor. Example:: >>> a = [1, 2, 3] >>> b = [4, 5] >>> list(itertools.product(a, b)) [(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)] >>> tensor_a = torch.tensor(a) >>> tensor_b = torch.tensor(b) >>> torch.cartesian_prod(tensor_a, tensor_b) tensor([[1, 4], [1, 5], [2, 4], [2, 5], [3, 4], [3, 5]]) """ return torch._C._VariableFunctions.cartesian_prod(tensors)
[docs]def norm(input, p="fro", dim=None, keepdim=False, out=None, dtype=None): r"""Returns the matrix norm or vector norm of a given tensor. Args: input (Tensor): the input tensor p (int, float, inf, -inf, 'fro', 'nuc', optional): the order of norm. Default: ``'fro'`` The following norms can be calculated: ===== ============================ ========================== ord matrix norm vector norm ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- Other as vec norm when dim is None sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== dim (int, 2-tuple of ints, 2-list of ints, optional): If it is an int, vector norm will be calculated, if it is 2-tuple of ints, matrix norm will be calculated. If the value is None, matrix norm will be calculated when the input tensor only has two dimensions, vector norm will be calculated when the input tensor only has one dimension. If the input tensor has more than two dimensions, the vector norm will be applied to last dimension. keepdim (bool, optional): whether the output tensors have :attr:`dim` retained or not. Ignored if :attr:`dim` = ``None`` and :attr:`out` = ``None``. Default: ``False`` out (Tensor, optional): the output tensor. Ignored if :attr:`dim` = ``None`` and :attr:`out` = ``None``. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is casted to :attr:'dtype' while performing the operation. Default: None. Example:: >>> import torch >>> a = torch.arange(9, dtype= torch.float) - 4 >>> b = a.reshape((3, 3)) >>> torch.norm(a) tensor(7.7460) >>> torch.norm(b) tensor(7.7460) >>> torch.norm(a, float('inf')) tensor(4.) >>> torch.norm(b, float('inf')) tensor(4.) >>> c = torch.tensor([[ 1, 2, 3],[-1, 1, 4]] , dtype= torch.float) >>> torch.norm(c, dim=0) tensor([1.4142, 2.2361, 5.0000]) >>> torch.norm(c, dim=1) tensor([3.7417, 4.2426]) >>> torch.norm(c, p=1, dim=1) tensor([6., 6.]) >>> d = torch.arange(8, dtype= torch.float).reshape(2,2,2) >>> torch.norm(d, dim=(1,2)) tensor([ 3.7417, 11.2250]) >>> torch.norm(d[0, :, :]), torch.norm(d[1, :, :]) (tensor(3.7417), tensor(11.2250)) """ ndim = input.dim() # catch default case if dim is None and out is None and dtype is None: if p == "fro": return torch._C._VariableFunctions.frobenius_norm(input) elif p != "nuc": return torch._C._VariableFunctions.norm(input, p) if p == "fro": if dtype is not None: raise ValueError("dtype argument is not supported in frobenius norm") if dim is None: dim = tuple(range(ndim)) if out is None: return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim) return torch._C._VariableFunctions.frobenius_norm(input, dim, keepdim=keepdim, out=out) elif p == "nuc": if dtype is not None: raise ValueError("dtype argument is not supported in nuclear norm") if out is None: torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim) return torch._C._VariableFunctions.nuclear_norm(input, keepdim=keepdim, out=out) else: if dim is None: dim = tuple(range(ndim)) if out is None and dtype is None: return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim) elif out is None: return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, dtype=dtype) elif dtype is None: return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, out=out) return torch._C._VariableFunctions.norm(input, p, dim, keepdim=keepdim, dtype=dtype, out=out)
[docs]def chain_matmul(*matrices): r"""Returns the matrix product of the :math:`N` 2-D tensors. This product is efficiently computed using the matrix chain order algorithm which selects the order in which incurs the lowest cost in terms of arithmetic operations (`[CLRS]`_). Note that since this is a function to compute the product, :math:`N` needs to be greater than or equal to 2; if equal to 2 then a trivial matrix-matrix product is returned. If :math:`N` is 1, then this is a no-op - the original matrix is returned as is. Args: matrices (Tensors...): a sequence of 2 or more 2-D tensors whose product is to be determined. Returns: Tensor: if the :math:`i^{th}` tensor was of dimensions :math:`p_{i} \times p_{i + 1}`, then the product would be of dimensions :math:`p_{1} \times p_{N + 1}`. Example:: >>> a = torch.randn(3, 4) >>> b = torch.randn(4, 5) >>> c = torch.randn(5, 6) >>> d = torch.randn(6, 7) >>> torch.chain_matmul(a, b, c, d) tensor([[ -2.3375, -3.9790, -4.1119, -6.6577, 9.5609, -11.5095, -3.2614], [ 21.4038, 3.3378, -8.4982, -5.2457, -10.2561, -2.4684, 2.7163], [ -0.9647, -5.8917, -2.3213, -5.2284, 12.8615, -12.2816, -2.5095]]) .. _`[CLRS]`: https://mitpress.mit.edu/books/introduction-algorithms-third-edition """ return torch._C._VariableFunctions.chain_matmul(matrices)
[docs]def pstrf(a, upper=True, out=None): r"""Computes the pivoted Cholesky decomposition of a symmetric positive-definite matrix :attr:`a`. returns a namedtuple (u, pivot) of matrice. If :attr:`upper` is ``True`` or not provided, `u` is upper triangular such that :math:`a = p^T u^T u p`, with `p` the permutation given by `pivot`. If :attr:`upper` is ``False``, `u` is lower triangular such that :math:`a = p^T u u^T p`. .. warning:: :func:`torch.pstrf` is deprecated in favour of :func:`torch.cholesky` and will be removed in the next release. Args: a (Tensor): the input 2-D tensor upper (bool, optional): whether to return a upper (default) or lower triangular matrix out (tuple, optional): namedtuple of `u` and `pivot` tensors Example:: >>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive definite >>> a tensor([[ 3.5405, -0.4577, 0.8342], [-0.4577, 1.8244, -0.1996], [ 0.8342, -0.1996, 3.7493]]) >>> u,piv = torch.pstrf(a) >>> u tensor([[ 1.9363, 0.4308, -0.1031], [ 0.0000, 1.8316, -0.2256], [ 0.0000, 0.0000, 1.3277]]) >>> piv tensor([ 2, 0, 1], dtype=torch.int32) >>> p = torch.eye(3).index_select(0,piv.long()).index_select(0,piv.long()).t() # make pivot permutation >>> torch.mm(torch.mm(p.t(),torch.mm(u.t(),u)),p) # reconstruct tensor([[ 3.5405, -0.4577, 0.8342], [-0.4577, 1.8244, -0.1996], [ 0.8342, -0.1996, 3.7493]]) """ warnings.warn("torch.pstrf is deprecated in favour of torch.cholesky and will be removed " "in the next release.", stacklevel=2) return torch._C._VariableFunctions.pstrf(a, upper=upper, out=out)
[docs]def potrf(a, upper=True, out=None): r"""Computes the Cholesky decomposition of a symmetric positive-definite matrix :math:`A`. For more information regarding :func:`torch.potrf`, please check :func:`torch.cholesky`. .. warning:: :func:`torch.potrf` is deprecated in favour of :func:`torch.cholesky` and will be removed in the next release. Please use :func:`torch.cholesky` instead and note that the :attr:`upper` argument in :func:`torch.cholesky` defaults to ``False``. """ warnings.warn("torch.potrf is deprecated in favour of torch.cholesky and will be removed in the next " "release. Please use torch.cholesky instead and note that the :attr:`upper` argument in" " torch.cholesky defaults to ``False``.", stacklevel=2) return torch.cholesky(a, upper=upper, out=out)
[docs]def potri(a, upper=True, out=None): r"""Computes the inverse of a symmetric positive-definite matrix :math:`A` using its Cholesky factor. For more information regarding :func:`torch.potri`, please check :func:`torch.cholesky_inverse`. .. warning:: :func:`torch.potri` is deprecated in favour of :func:`torch.cholesky_inverse` and will be removed in the next release. Please use :func:`torch.cholesky_inverse` instead and note that the :attr:`upper` argument in :func:`torch.cholesky_inverse` defaults to ``False``. """ warnings.warn("torch.potri is deprecated in favour of torch.cholesky_inverse and will be removed in " "the next release. Please use torch.cholesky_inverse instead and note that the :attr:`upper` " "argument in torch.cholesky_inverse defaults to ``False``.", stacklevel=2) return torch.cholesky_inverse(a, upper=upper, out=out)
[docs]def potrs(b, u, upper=True, out=None): r"""Solves a linear system of equations with a positive semidefinite matrix to be inverted given its Cholesky factor matrix :attr:`u`. For more information regarding :func:`torch.potrs`, please check :func:`torch.cholesky_solve`. .. warning:: :func:`torch.potrs` is deprecated in favour of :func:`torch.cholesky_solve` and will be removed in the next release. Please use :func:`torch.cholesky_solve` instead and note that the :attr:`upper` argument in :func:`torch.cholesky_solve` defaults to ``False``. """ warnings.warn("torch.potrs is deprecated in favour of torch.cholesky_solve and will be removed " "in the next release. Please use torch.cholesky instead and note that the " ":attr:`upper` argument in torch.cholesky_solve defaults to ``False``.", stacklevel=2) return torch.cholesky_solve(b, u, upper=upper, out=out)
[docs]def gesv(b, A, out=None): r"""This function returns the solution to the system of linear equations represented by :math:`AX = B` and the LU factorization of A, in order as a tuple `X, LU`. For more information regarding :func:`torch.gesv`, please check :func:`torch.solve`. .. warning:: :func:`torch.gesv` is deprecated in favour of :func:`torch.solve` and will be removed in the next release. Please use :func:`torch.solve` instead. """ warnings.warn("torch.gesv is deprecated in favour of torch.solve and will be removed in the " "next release. Please use torch.solve instead.", stacklevel=2) return torch.solve(b, A, out=out)
[docs]def trtrs(b, A, upper=True, transpose=False, unitriangular=False, out=None): r"""Solves a system of equations with a triangular coefficient matrix :math:`A` and multiple right-hand sides :attr:`b`. In particular, solves :math:`AX = b` and assumes :math:`A` is upper-triangular with the default keyword arguments. For more information regarding :func:`torch.trtrs`, please check :func:`torch.triangular_solve`. .. warning:: :func:`torch.trtrs` is deprecated in favour of :func:`torch.triangular_solve` and will be removed in the next release. Please use :func:`torch.triangular_solve` instead. """ warnings.warn("torch.trtrs is deprecated in favour of torch.triangular_solve and will be " "removed in the next release. Please use torch.triangular_solve instead.", stacklevel=2) return torch.triangular_solve(b, A, upper=upper, transpose=transpose, unitriangular=unitriangular, out=out)
[docs]def btrifact(A, pivot=True, out=None): r"""Returns a tuple containing the LU factorization and pivots of :attr:`A`. Pivoting is done if :attr:`pivot` is set. For more information regarding :func:`torch.btrifact`, please check :func:`torch.lu`. .. warning:: :func:`torch.btrifact` is deprecated in favour of :func:`torch.lu` and will be removed in the next release. Please use :func:`torch.lu` instead. """ warnings.warn("torch.btrifact is deprecated in favour of torch.lu and will be " "removed in the next release. Please use torch.lu instead.", stacklevel=2) return lu(A, pivot=pivot, get_infos=False, out=out)
[docs]def btrifact_with_info(A, pivot=True, out=None): r"""Performs LU factorization and returns additional status information along with the LU factorization and pivots. For more information regarding :func:`torch.btrifact_with_info`, please check :func:`torch.lu`. .. warning:: :func:`torch.btrifact_with_info` is deprecated in favour of :func:`torch.lu` and will be removed in the next release. Please use :func:`torch.lu` with the :attr:`get_infos` argument set to ``True`` instead. """ warnings.warn("torch.btrifact_with_info is deprecated in favour of torch.lu and will be " "removed in the next release. Please use torch.lu with the get_infos argument " "set to True instead.", stacklevel=2) return lu(A, pivot=pivot, get_infos=True, out=out)
[docs]def btriunpack(LU_data, LU_pivots, unpack_data=True, unpack_pivots=True): r"""Unpacks the data and pivots from a LU factorization of a tensor. For more information regarding :func:`torch.btriunpack`, please check :func:`torch.lu_unpack`. .. warning:: :func:`torch.btriunpack` is deprecated in favour of :func:`torch.lu_unpack` and will be removed in the next release. Please use :func:`torch.lu_unpack` instead. """ warnings.warn("torch.btriunpack is deprecated in favour of torch.lu_unpack and will be " "removed in the next release. Please use torch.lu_unpack instead.", stacklevel=2) return lu_unpack(LU_data=LU_data, LU_pivots=LU_pivots, unpack_data=unpack_data, unpack_pivots=unpack_pivots)
[docs]def btrisolve(b, LU_data, LU_pivots, out=None): r"""Solves the system of equations :math:`Ax = b` using the partially pivoted LU factorization of :math:`A` given by :attr:`LU_data` and :attr:`LU_pivots`. For more information regarding :func:`torch.btrisolve`, please check :func:`torch.lu_solve`. .. warning:: :func:`torch.btrisolve` is deprecated in favour of :func:`torch.lu_solve` and will be removed in the next release. Please use :func:`torch.lu_solve` instead. """ warnings.warn("torch.btrisolve is deprecated in favour of torch.lu_solve and will be " "removed in the next release. Please use torch.lu_solve instead.", stacklevel=2) return torch.lu_solve(b, LU_data=LU_data, LU_pivots=LU_pivots, out=out)
[docs]def lu(A, pivot=True, get_infos=False, out=None): r"""Computes the LU factorization of a square matrix or batches of square matrices :attr:`A`. Returns a tuple containing the LU factorization and pivots of :attr:`A`. Pivoting is done if :attr:`pivot` is set to ``True``. .. note:: The pivots returned by the function are 1-indexed. If :attr:`pivot` is ``False``, then the returned pivots is a tensor filled with zeros of the appropriate size. .. note:: LU factorization with :attr:`pivot` = ``False`` is not available for CPU, and attempting to do so will throw an error. However, LU factorization with :attr:`pivot` = ``False`` is available for CUDA. .. note:: This function does not check if the factorization was successful or not if :attr:`get_infos` is ``True`` since the status of the factorization is present in the third element of the return tuple. Arguments: A (Tensor): the tensor to factor of size :math:`(*, m, m)` pivot (bool, optional): controls whether pivoting is done. Default: ``True`` get_infos (bool, optional): if set to ``True``, returns an info IntTensor. Default: ``False`` out (tuple, optional): optional output tuple. If :attr:`get_infos` is ``True``, then the elements in the tuple are Tensor, IntTensor, and IntTensor. If :attr:`get_infos` is ``False``, then the elements in the tuple are Tensor, IntTensor. Default: ``None`` Returns: (Tensor, IntTensor, IntTensor (optional)): A tuple of tensors containing - **factorization** (*Tensor*): the factorization of size :math:`(*, m, m)` - **pivots** (*IntTensor*): the pivots of size :math:`(*, m)` - **infos** (*IntTensor*, *optional*): if :attr:`get_infos` is ``True``, this is a tensor of size :math:`(*)` where non-zero values indicate whether factorization for the matrix or each minibatch has succeeded or failed Example:: >>> A = torch.randn(2, 3, 3) >>> A_LU, pivots = torch.lu(A) >>> A_LU tensor([[[ 1.3506, 2.5558, -0.0816], [ 0.1684, 1.1551, 0.1940], [ 0.1193, 0.6189, -0.5497]], [[ 0.4526, 1.2526, -0.3285], [-0.7988, 0.7175, -0.9701], [ 0.2634, -0.9255, -0.3459]]]) >>> pivots tensor([[ 3, 3, 3], [ 3, 3, 3]], dtype=torch.int32) >>> A_LU, pivots, info = torch.lu(A, get_infos=True) >>> if info.nonzero().size(0) == 0: ... print('LU factorization succeeded for all samples!') LU factorization succeeded for all samples! """ # If get_infos is True, then we don't need to check for errors and vice versa result = torch._lu_with_info(A, pivot=pivot, check_errors=(not get_infos)) if out is not None: if not isinstance(out, (tuple, list)): raise TypeError("argument 'out' must be tuple of Tensors, not {}" .format(type(out).__name__)) if len(out) - int(get_infos) != 2: raise TypeError("expected tuple of {} elements but got {}" .format(2 + int(get_infos), len(out))) return (out[i].resize_as_(result[i]).copy_(result[i]) for i in range(len(out))) if get_infos: return result # A_LU, pivots, infos else: return result[0], result[1] # A_LU, pivots

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources